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Abstract

Many network monitoring tasks identify subsets of traffic that stand out, e.g., top-

k flows for a particular statistic. We can efficiently determine these “heavy-hitter”

flows on individual network elements, but network operators often want to iden-

tify interesting traffic on a network-wide basis. Determining the heavy hitters on

a network-wide basis necessarily introduces a trade-off between the communication

required to perform this distributed computation and the accuracy of the results. To

perform distributed heavy-hitter detection in real time with high accuracy and low

overhead, we extend the Continuous Distributed Monitoring (CDM) model to ac-

count for the realities of modern networks and devise practical solutions that detect

heavy hitters with high accuracy and low communication overhead. We present two

novel algorithms that automatically tune the set of monitoring switches in response

to traffic dynamics. We implement our system using the P4 language, and evaluate

it using real-world packet traces. We demonstrate that our solutions can accurately

detect network-wide heavy hitters with up to 70% savings in communication overhead

compared to existing approaches.
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1. Introduction

Network operators often need to identify outliers in network traffic, to detect attacks

or diagnose performance problems. A common way to detect unusual traffic is to

perform “heavy hitter” detection that identifies the top-k flows (or flows exceeding a

pre-determined threshold), according to some metric. For example, network operators

often track destinations receiving traffic from a large number of sources with high

precision in order to detect and mitigate DDoS attacks or TCP incast [3] in real

time. In traditional networks, this heavy-hitter detection relies on analyzing packet

samples or flow logs [4, 5]. Networks that forward high traffic volumes often resort

to sampling 1
n

packets, where n is operator-defined based on the needs of the specific

network. However, sampling can result in substantially reducing accuracy on small

time scales [19], even when traffic volumes are high. In Figure 1.1, we show the impact

sampling has on accuracy while performing heavy-hitter detection on a link between

two major ISPs [11] processing approximately 8,092 Mbps of traffic. The precision is

quite low and it quickly diminishes as sampling rates decrease. In modern datacenter

networks where switches commonly sample one packet out of 1,000–30,000 [25], we

need new, network-wide techniques that are both efficient and accurate for real-time

monitoring.

Programmable switches open up new possibilities for aggregating traffic statistics

and identifying large flows directly in the data plane [16, 17, 24, 27]. These solutions

use approximate data structures, which bound memory and processing overhead in
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Figure 1.1: This graph shows the precision for detecting heavy hitters between two
major ISPs [11] with different monitoring intervals. Precision quickly diminishes and
worsens as the monitoring interval decreases.

exchange for some loss in accuracy, in order to deal with the limited resources available

on the switches.

While prior work has focused on detecting heavy hitters at a single switch, net-

work operators often need to track the network-wide heavy hitters. For example,

port scanners [14] and superspreaders [27] could go undetected if the traffic is mon-

itored only at one location. Detecting the heavy hitters separately at each switch

and then combining the results is not sufficient. Large flows could easily fall “under

the radar” at multiple locations but still have sizable total volume. To accurately

detect heavy hitters from a network-wide perspective we must introduce some com-

munication between the nodes that could count a portion of a given flow. Since we

must communicate for each flow that we wish to monitor, keeping the communication

overhead low is important for scaling to a large number of flows or a large number of

different heavy-hitter queries.

To quantify the amount of communication required to achieve accurate results,

we frame detecting network-wide heavy hitters as an instance of the continuous dis-

2



tributed monitoring (CDM) problem [6]. Solutions [6, 26] to this problem demonstrate

theoretical upper and lower bounds on the communication overhead by relaxing the

accuracy of the results. However in the worst case, these solutions can actually de-

grade to 1
n
-sampling which leads to poor accuracy. Additionally, the abstract problem

itself also fails to account for many properties of real networks, such as spatial local-

ity, which we can exploit to further reduce the communication overhead while still

achieving accurate results.

To perform network-wide heavy-hitter detection for real-time telemetry that

achieves high accuracy with low communication overhead, we augment the CDM

model:

Selective Edge Monitoring We augment the CDM problem to better model

the network-wide heavy hitter detection problem based on the structure and locality

properties of modern networks [21, 22]. While CDM treats all nodes in a network as

being equally likely to observe the packets of a given flow, we note that only a subset

of the entire network will actually observe the packets of a given flow. We enhance

the CDM model to account for these observations.

Based on spatial locality of network traffic, we design two heavy-hitter detection

algorithms:

Adaptive Local Threshold The first one is an error-free algorithm which we call

Adaptive Local Threshold (ALT) approach. Inspired by prior work on distributed

rate limiting [20], we apply adaptive thresholds to adjust to skews in the traffic vol-

umes across different edge switches. Each switch identifies which traffic to report

to the coordinator, using different local thresholds for different monitored keys. The

coordinator combines the reports across the switches to aggregate statistics and iden-

tifies the heavy hitters. Also, the coordinator selectively polls switches for additional

counts and updates the local thresholds for relevant keys to reduce future communi-

cation overhead.

3



Probabilistic Reporting Unlike ALT, Probabilistical Reporting (PR) does

not need the global coordination. PR uses probabilistic reporting to detect network-

wide heavy hitters with both high accuracy and low communication. Each flow’s local

threshold is set the same across all switches, but local thresholds for different flows

may be different. Each switch probabilistically reports signals to the controller when

the counts of any flow are greater than the local threshold. If the number of signals of

any key is greater than a fixed threshold, the controller idenitifies the key as a heavy

hitter.

Our main contribution of the paper is:

• We augment the CDM model by factoring the spatial locality of the network

traffic into its decision.

• We design Adaptive Local Threshold approach which achieves perfect accuracy

and reduces the communication cost comparing to the best known error-free

approach in a small network.

• We design Probabilistic Reporting approach which balances accuracy and com-

munication overhead in a large network.

• We prototype our solutions using the P4 [2] language. Experiments with ISP

backbone traces [11] show that our methods substantially reduce the number of

messages exchanged between the switches and the centralized controller while

maintaining high precision and recall rate.

4



2. Related Work

Our work lies at the intersection of several areas in the database, theory, and the

networking research communities.

2.1 Frequent and Top-k Item Detection

Calculating frequent and top-k items over data streams has been well-studied. How-

ever, much of this work has focused on theoretical bounds and reducing the space [9]

required to calculate these statistics. Several systems [12, 16, 17, 24, 27] make use of

these compact data structures to perform heavy-hitter detection on a single switch.

Our work is orthogonal to these approaches that reduce the memory overhead on a

single device; instead, we focus on reducing the communication overhead required to

perform network-wide heavy-hitter detection.

2.2 Distributed Detection

Jain et al. [13] make the case for using local thresholds to monitor a global property,

but they focus on the design considerations for such solutions rather than a specific

system. Our work demonstrates an actual prototype that uses adaptive, local thresh-

olds inspired by distributed rate limiting [20] and calculated with local and global

estimates. The problem of calculating frequent and top-k items over distributed

data streams has also been well-studied. These works shift their focus from reducing

5



memory overhead to reducing the communication overhead in the distributed con-

text [1, 7, 8, 15]. However, these approaches ignore the impact of key distribution

in the distributed streams. Our work focuses on exploiting the spatial locality of

network traffic to improve upon these previous results.

6



3. Monitoring Model

3.1 Continuous Distributed Monitoring Model

Detecting network-wide heavy hitters is an instance of the continuous distributed

monitoring (CDM) problem [6]. As shown in Figure 3.1, each of N sites sees a

stream of observations (packets), and each packet is observed at precisely one site.

These sites work with a central coordinator to compute some (commutative and

associative) function over the global set of observations. The objective is to minimize

the communication cost between the sites and the coordinator, while continuously

computing the function in real time. For network-wide heavy hitters, we want to

determine which flows exceed a global threshold (T ) for a given statistic of interest.

The best known solutions to this problem rely on setting per-site thresholds (t) and

alerting the coordinator after the local threshold has been exceeded. After receiving a

number of reports from the sites, the coordinator determines that the global threshold

has been exceeded.

3.2 Selective Edge Monitoring

CDM does not adapt to natural differences in the portions of the traffic that enter

(or leave) the network at different locations. In practice, the traffic from a single

source IP address typically enters the network at a limited number of sites. For

7
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Figure 3.1: CDM Model. Each switch stores a count (Ci,k) and a local threshold
(ti,k) per key. Indices (i, k) refer to switch i and key k, respectively. Unless otherwise
specified, k is the standard five-tuple.

example, in a datacenter, the traffic sent to a tenant’s VMs can only enter VMs

through a finite list of leaf switches, because cloud providers typically place a tenants

VMs under the same leaf or spine switch to reduce bandwidth overhead for cross-VM

communication [23]. Similarly, the traffic to a unique destination IP address or prefix

usually leaves the network at just a few locations. This spatial locality of network

traffic provides opportunities to reduce the overhead of detecting heavy hitters if

the coordinator can efficiently adapt monitoring thresholds to the actual volumes of

traffic experienced. Based on this observation, we introduce a new symbol Lk to

augment the CDM model, which refers to the number of monitoring switches for the

flow k. Using this augmented model, we design two algorithms to further reduce the

communication overhead.
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4. Heavy-Hitter Algorithms

Rather than focusing on detecting heavy hitters with high memory efficiency, our

approaches focus on maintaining high accuracy and at the same time reducing the

overall communication overhead between the switches and the coordinator. In this

chapter, we will first discuss error-free approaches and then focus on Probabilistic

Reporting approaches that further reduce the communication cost by sacrificing the

accuracy.

4.1 CMY Upper Bound

Previous work proved an upper bound O(N log T
N

) on the communication overhead

between the N sites and a single coordinator [7, 8] which we will call the CMY

Algorithm 1: The CMY Algorithm: Controller

Input: N switches, Global Threshold T , Count Ci,k, Round Rk

Output: Heavy Hitter Set (H), Local Threshold ti,k
Func HandleReport(k):

ReportedCk ← ReportedCk + 1
if ReportedCk ≥ N

if Rk ≥ dlog( T
N

)e
H ← H ∪ {k}

else
SetLocalThresholds(b2−i log( T

N
)c, k)

Func SetLocalThresholds(lt, k):
foreach i ∈ N do

ti,k ← lt

9



(Cormode–Muthukrishnan–Yi) upper bound. CMY is the best known error-free

approach we found for saving the communication cost which can be applied in PISA

switches [7]. The algorithm proceeds over dlog T
N
e rounds. In the ith round, each

switch sends a signal to the controller once its local count reaches b2−i log T
N
c. The

controller will wait until it receives N signals and then advance to the next round.

Once the controller receives N signals in the last round for a key k, k is identified as

a heavy hitter. The algorithm is shown in Algorithm 1. This approach achieves the

upper bound O(N log T
N

) of communication cost which we will refer as CMY upper

bound [7]. As mentioned eariler, this algorithm ignores the distribution of keys. Our

work shows the improvement upon this upper bound by utilizing spatial locality of

network traffic.

4.2 Adaptive Local Threshold

ALT counts the traffic entering the network at each edge switch, and applies local,

per-key thresholds to trigger reports to a central coordinator. The coordinator adapts

these thresholds to the prevailing traffic to reduce the total number of reports. Edge

switches count incoming traffic across packets with the same key k, such as a source

IP address, source-destination pair, or five-tuple. Each edge switch i maintains a

count (Ci,k) and a threshold (ti,k) for each key k, as shown in Figure 3.1. The switch

computes the counts, and the central coordinator sets the thresholds. When the

local count for a key reaches or exceeds its local threshold, the switch sends the

coordinator a report with the key and the count, which triggers the controller to

HandleReport(i,Ci,k) as shown in Algorithm 2.

The coordinator combines the counts for the same key across reports from multiple

switches. Since switches only send reports after the count for a key equals or exceeds

its local threshold, the coordinator has incomplete information about the true global

10



count. A switch i that has not sent a report for key k could have a count, at most,

just under ti,k, which allows the coordinator to make a conservative estimate of the

global count. The controller computes this estimate (Estimate(k)) by aggregating

the counts (Ci,k) from switches that sent reports and assuming a count equal to one

less than the local threshold, i.e., Ci,k = ti,k− 1, for the non-reporting switches. If the

estimated total equals or exceeds the global threshold for the key (T ), the coordinator

polls all of the switches whose local thresholds are greater than zero to learn their

current counts and produces a more accurate estimate. If the total calculated after

polling equals or exceeds the global threshold, then the coordinator reports key k as

a heavy hitter with the count
∑

iCi,k.

Algorithm 2: Adaptive Local Thresholds: Controller

Input: N switches, Global Threshold T , Count Ci,k,
Output: Heavy Hitter Set (H), Local Threshold ti,k
Func HandleReport(i, Ci,k):

ReportedCi,k ← Ci,k
if Estimate (k) ≥ T (k)

if GlobalPoll(k) ≥ T
H ← H ∪ {k}

Reset_Threshold (k)

Func Estimate(k):

return
∑N

i=1 (ReportedCi,k ≥ ti,k ?ReportedCi,k : ti,k − 1)

Func Reset_Threshold(k):
foreach i ∈ N do

frac← (1− α)× EWMAi,k + α×ReportedCi,k∑N
j=1 (1− α)× EWMAj,k + α×ReportedCj,k

ti,k ← frac× (T −
∑N

j=1ReportedCj,k) +ReportedCi,k

Func GlobalPoll(k):
Total← 0
foreach i ∈ N do

if ti,k > 0
Total← Total + Poll (i, k)

return Total

11



The coordinator adapts the per-key local thresholds based on past reports. Each

local threshold starts as a fraction of the global threshold and the number of sites,

i.e., ti,k = T
N

, and is then recomputed by the coordinator based on subsequent re-

ports. Algorithm 2 describes the actions taken by the coordinator after receiving a

Report(i,Ci,k). Inspired by distributed rate limiting [20], the coordinator adapts

the local thresholds based on the exponentially weighted moving average (EWMA)

of the local and global counts. We use the EWMA to reflect the intuition that if

a particular key was a heavy hitter in the past, it is likely to be a heavy hitter in

the future. We, therefore, adjust local thresholds (Reset Threshold(k)) to reflect

each site’s fraction of the global EWMA for a particular key. This adjustment en-

sures that switches which observe the majority of the traffic for a given key apply a

higher local threshold. By tuning these local thresholds based on the local and global

EWMA, we further reduce the communication overhead between the switches and

the coordinator.

4.3 Probabilistic Reporting Approach

In order to achieve the perfect accuracy, error-free approaches have to globally poll

counts from each switch or reset local thresholds of all switches when certain con-

ditions are met. However, when the number of monitoring switches increases, the

cost of global polling increases sharply and negates the effect of adpatively tuning

local thresholds. The probabilistic reporting approaches, which we focus on in this

section, eliminate the need of global polling and lower the communication cost by

probabilistically reporting signals to the controller. In this section, we first discuss

the basic Probabilistic Reporting algorithm proposed by Cormode [6] and then factor

the number of monitoring switches Lk into PR’s decision. Unless otherwise specified,

we always use Probabilistic Reporting or PR to refer our augmented Probabilistic

12



Symbol Meaning

N Total sites in the network
T Global threshold for flow k
ti,k Local threshold at site i for flow k
M Number of reports controller expects

to declare a heavy hitter
Lk Number of monitoring switches for

flow k
ε Approximation factor
c Communication factor
rpk Local reporting probability for flow

k

Table 4.1: Notation

Algorithm 3: Basic Probabilistic Reporting Approach

Input: Count Ci,k
Output: Heavy Hitter Set (H)
M ← c

ε
; ti,k ← ε∗T

N
; rpk ← 1

N

Func Controller: HandleReport(k):
ReportedCk ← ReportedCk + 1
if ReportedCk ≥M

H ← H ∪ {k}
Func Switch i: RecvPkt(k):

if Counti,k ≥ ti,k
Counti,l ← 0
With Probabliity rpk, Report (k)

Reporting approach, rather than the basic Probabilistic Reporting approach proposed

by Cormode. The notation is shown in Table 4.1.

4.3.1 The Basic Approach

There areN switches in the network and a global threshold T . Each switch imaintains

a local threshold ti,k and a counter per flow. Once the number of packets for a flow is

equal to the local threshold in a switch, it resets the counter and sends a signal to the

controller with probability rpk. When the controller receives M signals for a flow, the

13



Algorithm 4: Augmented Probabilistic Reporting Approach

Input: Count Ci,k
Output: Heavy Hitter Set (H)
M ← c

ε
; ti,k ← ε∗T

Lk
; rpk ← 1

Lk

Func Controller: HandleReport(k):
ReportedCk ← ReportedCk + 1
if ReportedCk ≥M

H ← H ∪ {k}
Func Switch i: RecvPkt(k):

if Counti,k ≥ ti,k
Counti,l ← 0
With Probabliity rpk, Report (k)

flow is identified as a heavy hitter. The algorithm is shown in Alg.3. This method

reduces the communication cost by probabilitistically reporting while sacrificing the

accuracy.

4.3.2 Adding Spatial Locality

However in the worst case, these solutions can actually degrade to 1
N

sampling which

leads to poor accuracy. For example, when ε = 0.1, T = 1000 and N = 100, the

local threshold becomes 1. This means for every packet, a switch may report a

signal with probability = 0.01. The basic Probability Reporting approach does not

adapt to natural differences in the portions of the traffic that enter (or leave) the

network at different locations. In practice, a flow from a single source IP address

typically enters the network at a limited number of sites. Based on this spatial

locality of network traffic, we introduce a new parameter Lk. Lk refers to the number

of monitoring switches that observes flow k. Reporting rate in our approach changes

to 1
Lk

, rather than 1
N

and the local threshold is now ε∗T
Lk

. The algorithm is shown

in Alg. 4. Comparing to the basic approach, our approach has higher accuracy and

lower communication cost, shown in Chapter 6.

14



5. Implementation

5.1 P4 Prototype

Our prototype of data-plane algorithms consists of approximately 200 lines of P4

code to monitor per-key counts with adaptive thresholds. We allocate two registers

(hash tables) to store the count and the threshold for each key. The maximum

number of entries that can be stored in registers across all stages of a particular

PISA target determines the maximum number of keys that can be monitored in the

data plane. When a packet arrives, match-action tables determine if it corresponds

to a monitored key and, if so, looks up the current count and threshold in each

register. Alternatively, the threshold could also be stored as a parameter to a match-

action table entry. Depending on the cost of updating match-action table entries or

the availability of register memory in different data-plane targets, one could choose

whichever implementation is appropriate for that target and forwarding logic. The

switch generates a report for the coordinator by cloning the original packet that

triggered the report and embedding the count into the clone. All of this logic can be

performed in as few as seven logical match-action tables using P4 and such a small

program could easily run alongside sophisticated forwarding logic with the resources

available on targets like Tofino [18]. However, the precise amount of memory used

on the switch depends on the aggregation level of the monitored keys (e.g., five-tuple

15



flow or single IP), the timescale of monitoring, and the distribution of keys in the

underlying network traffic.

5.2 Memory Efficiency Considerations

Switches can maintain the per-key state (local counts and thresholds) using a hash-

index array. In the simplest case, the switch would keep per-key state in registers,

storing the current count Ci,k and threshold Ti,k for each key k.

While maintaining per-key state is expensive from a memory perspective, Chapter

6 shows that, in practice, we can store per-key state for a realistic query, based on real-

world traffic traces. Our system identifies heavy hitters on a sliding time window (W ),

at the conclusion of which the counters for each key are reset. Only counting flows that

appear on the window W reduces the memory for storing the per-key state. However,

nothing about our approaches prevents us from employing space-saving algorithms

and data structures [9, 24] if the memory constraints were prohibitive or we wanted

to use much longer time windows. In Section 7, we will discuss how compact data

structures can actually enhance our system beyond the base algorithm.
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6. Evaluation

In this section, we quantify the reduction in the communication overhead using our

algorithms. We first describe the experimental setup in Section 6.1 and then compare

the performance of ALT to the CMY bound described by Cormode et al. [6, 7, 8]

and the performance of our PR to the basic one in Section 6.2 and Section 6.3

respectively. We also quantify how sensitive the performance of ALT and PR is

to various experimental parameters. For communication overhead, our evaluation

shows that ALT improves upon the CMY upper bound [6] by up to 70% and our

PR improves by up to 60% compared to the basic approach. We omit an explicit

experiment to evaluate accuracy for our ALT approach because it achieves 100%

precision and recall.

6.1 Experimental Setup

To quantify the performance of our approaches, we used CAIDA’s anonymized Inter-

net traces from 2016 [11]. These traces consist of all the traffic traversing a single

OC-192 link between Seattle and Chicago within a major ISP’s backbone network.

Each minute of the trace consists of approximately 64 million packets. For our ex-

periments, we consider all IPv4 packets for analysis using a rolling time window of

W = 6 seconds. On average, 6 million packets are processed in each window which

consists of approximately 300,000 flows and 250,0000 unique source and destination

pairs.
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Figure 6.1: Communication overhead is reduced even when the sources’ affinity for a
preferred ingress switch is low.

We simulate a one-big-switch network consisting of N edge nodes (switches). The

one-big-switch network is an abstraction that hides internal topology details and

focuses on edge switches. In order to model spatial locality of network traffic using

data from a point-to-point link, we associate packets from the trace with a given

ingress switch based on a hash of the source IP address. For each source IP address,

we assign an affinity for a specific ingress switch with probability p. Packets from a

given source IP are, therefore, processed at a “preferred” switch with probability p

and at l other switches with probability (1−p)
(l−1)

where N, l ≥ 2. On this distribution

of traffic, we run a simple heavy-hitter query to determine which flows (based on the

standard five-tuple of source/destination IP address, source/destination port, and

transport protocol) send a number of packets greater than a global threshold (T )

during a rolling time window (W ). Unless otherwise specified, when evaluating error-

free algorithms, we set N = 4, l = 2, p = 0.95, and T = 600. For calculating EWMA,

we used a smoothing factor, α = 0.8 for all our experiments. This factor must satisfy

0 < α < 1 where smaller values of α react to changes in the average slower than larger

values do. When evaluating our PR algorithm, we set N = 100, L = 2, c = 0.95,
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Figure 6.2: As the global threshold increases, the fraction of overall traffic that con-
stitute heavy hitters decreases, reducing the communication overhead.

Thresholds 200 400 600 800 1000
Message Reduction (%) 66.1 68.7 71.3 67.7 70.8

Table 6.1: Communication reduction over the CMY upper bound is not affected as
the threshold increases.

ε = 0.1 and T = 1000. In our experiment, we omit the symbol k in the Lk and set all

Lk to the same number L and assume L is unchanged and known to the algorithm

in our experiement. One of our ongoing work is to design an algorithm to learn the

number of monitoring switches per flow at run time. In the future, when getting the

network trace from multiple switches, we will evaluate how the learning algorithm

improves our PR algorithm.

6.2 Error-Free Approaches Evaluation

We now use these traces to demonstrate how ALT reduces the communication over-

head on continuous distributed monitoring for detecting heavy hitters. We compare

the performance of ALT to the CMY upper bound [6]. CMY proceeds in a fixed

sequence of rounds where each round reduces the per-site threshold exponentially
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Figure 6.3: As the number of sites increases, the communication overhead increases
due to the additional nodes communicating with the coordinator.

Number of Sites 2 4 8 12 16 20
Message Reduction(%) 70.0 71.1 64.0 48.0 39.2 32.4

Table 6.2: Communication reduction over the CMY upper bound lessens as the
number of sites increases.

until it reaches 1. We quantify the communication overhead in terms of the median

number of messages per window interval. To demonstrate the sensitivity of the com-

munication reduction with respect to various parameters, we ran experiments varying

one of four key parameters: affinity probability (p), global threshold (T ), number of

sites (N), and smoothing factor (α).

6.2.1 Sensitivity to Site Affinity

In this experiment, we compare the performance of ALT to the CMY upper bound

while varying the affinity for a given ingress switch. Figure 6.1 shows how the perfor-

mance, quantified as the number of messages sent over time, varies as we increase the

site affinity probability from p = {0.5, 0.75, 0.95, 0.99, 1.0}. Here, an affinity proba-

bility of p = 0.5 implies that a packet will be processed by the preferred site with
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probability 0.5 and p = 1.0 implies that a packet will only be processed at the pre-

ferred site. We see that our approach substantially reduces the number of messages

exchanged between the sites and the controller regardless of the sources’ affinity for

a particular ingress switch. We do see a substantial drop between p = 0.99 to p = 1.0

because when p = 1.0 a given source always enters the network at the same loca-

tion. The problem of determining network-wide heavy hitters has been reduced to

determining which keys are heavy on each edge switch, which substantially reduces

communication overhead.

6.2.2 Sensitivity to Threshold

In this experiment, we compare the performance of ALT for different threshold (T )

values with the CMY upper bound. Figure 6.2 shows how the performance, quan-

tified as the total number of messages sent over the entire experiment duration (60

sec), varies as we increase the global threshold. The total number of messages de-

creases as the threshold value increases because the total number of heavy hitters

necessarily decreases with the larger thresholds. However, the increase in threshold

has little impact on the performance of ALT compared to the CMY bound. Ta-

ble 6.1 shows that our solution incurs 70% less communication overhead for T = 1000,

which corresponds to a top-k=700 for this data set and query.

6.2.3 Sensitivity to Number of Sites

In this experiment, we compare the performance of ALT with the CMY upper

bound as the number of sites (N) increases. Figure 6.3 shows how the performance,

quantified as the total number of messages sent over the entire experiment duration,

varies as we increase the number of sites. We observe that as the number of sites

increases, our communication overhead increases as a result of the increased cost to
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Figure 6.4: As alpha increases, the algorithm is able to more quickly adapt to changes
in the traffic distribution which results in lower communication overhead.

globally poll all sites. However, Table 6.2 shows that our solution still reduces the

communication overhead by 30–70% for up to N = 20.

6.2.4 Sensitivity to Traffic Changes

In real-world networks, changes to traffic patterns and distributions are a regular

occurrence due to planned changes as well as failures. In Figure 6.4, we examine how

well ALT responds to changes in traffic patterns. At time t = 30s, we change the set

of ingress switches for all keys and evaluate how our algorithm performs for various

choices of the smoothing factor (α). For all values of α, we see a sharp increase in the

communication overhead after a disruption followed by a brief period of adjustment,

depending on the value of α. The single, abrupt change in this experiment fails to ac-

count for the variety of traffic dynamics one might experience in a production network

and selecting the best value of α depends on those specific conditions. For example,

selecting a large α might perform worse in a network that experiences frequent, but

brief, transient changes because it would frequently “over-correct” the thresholds for

these brief changes.
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Figure 6.5: As number of switches increases, the precision of our PR still outperforms
the basic PR algorithm by at least eight percent.

6.3 Probabilistic Reporting Approaches Evalua-

tion

Similar to the error-free approaches evaluation, we quantify the communication over-

head of two probabilistic reporting approaches in terms of the median number of

communication overhead per window interval. Since both approaches cannot achieve

perfect accuracy, we also measure and compare recall and precision of two algorithms.

To demonstrate the sensitivity of the communication reduction and accuracy lost with

respect to various parameters, we ran experiments varying one of four key parameters:

number of monitoring switches (L), number of sites (N), the approximation factor

(ε) and the communication factor (c).

6.3.1 Sensitivity to Number of Switches

In this experiment, we compare the performance of our PR with the basic PR as

the number of sites (N) increases. Figure 6.6 shows how the performance, quantified
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Figure 6.6: Regardless the number of switches increases, the communication cost of
our PR outforms the basic PR.

as the total number of messages sent over the entire experiment duration, varies as

we increase the number of sites. Unlike ALT, we observe that as the number of sites

increases, our PR’s communication overhead stays almost the same. This observa-

tion demonstrates our PR scales well. Our PR solution reduces the communication

overhead by 30–60% for up to N = 100, comparing to the basic PR. Besides saving

the communication overhead, our PR also improves the precision by at least 8 %, as

shown in Figure 6.5. The recall of two algorithms are almost the same.

6.3.2 Sensitivity to L

In this experiment, we evaluate the performance of our PR as the number of moni-

toring switches L increases. Figure 6.8 shows how the performance of the algoirthm

changes as we increase L. We observe that as the number of sites increases, our com-

munication overhead increases slightly. Figures 6.7 illustrates that the precision of

our PR decrease slightly as L increases. The change of recall is similar as the change

of precision.
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Figure 6.7: As number of monitoring switches increases, Our PR stil maintains a
good precision rate.
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Figure 6.8: As number of monitoring switches increases, the communication cost of
our PR keeps almost the same.

6.3.3 Sensitivity to Approximation Factor

In this experiment, we show the performance of our PR as epsilon ε increases, as

shown in Figure 6.10. Again, ε is the approximation factor that determines the

25



0.05 0.1 0.15 0.2 0.25
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Recall
Precision

Figure 6.9: As epsilon ε increases, the median of recall of our PR decreases from 0.94
to 0.87 and the median of precision decreases from 0.89 to 0.82.
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Figure 6.10: As epsilon ε increases, the median of communication cost of our PR
decreases from 64000 to 8000 messages.

number of signals ( c
ε
) required for the controller to decide a flow is a heavy hitter and

the local threshold ε∗T
L

in the switch per flow.

As ε increases, the communication overhead decreases signifcantly from 64000 to

8000 messages. As shown in Figure 6.9, the recall of our PR approach decreases

from 0.94 to 0.87 as ε increases and the precision decreases from 0.89 to 0.82.
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Figure 6.11: As the communication factor c increases, the median of communication
cost of our PR gradually increases, regardless of the number of switches.
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Figure 6.12: As the communication factor c increases, the median of precision of our
PR gradually increases, regardless of the number of switches.

6.3.4 Sensitivity to Communication Factor

The communicaition factor c affects the number of signals ( c
ε
) required for the con-

troller to decide a flow is a heavy hitter. We measure the impact of c to the com-

munication overhead and precision of our PR approach as the number of switches
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Figure 6.13: As number of switches increases, the overhead of our PR is significantly
lower than the overhead of ALT.

increases in Fig 6.11 and Fig 6.12 respectively. The precision gradually decreases as

c decreases because the number of false positves increases. The communication over-

head also decreases as c decreases because the threshold c
ε

required for the controller

to detect a heavy hitter decreases.

6.3.5 Comparing to ALT Approach

We compare the performance of ALT to our PR as the number of switches increases.

We find out that as the number of switches increases, the performance of PR is much

better than the performance of ALT, as shown in Fig. 6.13. This figure shows that

in a large network, PR is a better algorithm to deploy, because it balances accuracy

and communication overhead very well. According to Fig. 6.12, the precision of PR

is not perfect and when the number of switches is small, the overhead of ALT is

similar as the overhead of PR. Therefore, in a small network, ALT is better.
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6.4 Evaluation Conclusion

As our evaluation shows, ALT saves the communication overhead, comparing to the

CMY bound and our PR algorithm reduces the communication cost and improves

the accuracy of the heavy-hitter detection, comparing to the basic PR algorithm.

Also, we find out that in a small network, ALT is a better option than PR to deploy

because ALT achieves perfect accuracy and the cost of ALT is comparable to the

cost of PR. In a large network, PR is a better option because PR balances accuracy

and the cost by tuning the communication factor c.
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7. Ongoing Work

While our evaluation demonstrated that our algorithms substantially reduce the com-

munication overhead for detecting heavy hitters, our approaches can be improved in

at least three ways: (1) by reducing the amount of state switches must store in the

data plane, (2) learning edge monitoring switches per flow and (3) supporting distinct

counts.

7.1 Memory-Efficient Heavy Hitters

Storing per-key state to support adaptive thresholds has high memory overhead, so

using a compact data structure, like a sketch, would be more memory-efficient. To

reduce the space requirements, the data plane could maintain a count-min sketch [9]

to estimate the counts for all keys, and then only store counts and thresholds for keys

with counts above some minimum size that would qualify them as a potential heavy

hitter.

7.2 Learn Edge Monitoring Switches

Learning the set of edge monitoring switches per flow at run time is crucial to deploy

our PR algorithm in the real world. The set of monitoring switches of a flow changes

over the time. For example, some edge switches may fail, causing the traffic enter

the network in a fewer ingress points. In this case, when the controller finds the
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failure happens, it should adjust Lk for the affected flows and send signals to all

edge switches that monitor those flows. Misconfiuring Lk causes us to pay additional

communication overhead. In the worst case, our PR algorithm may downgrade to

the basic PR approach. One of our ongoing work is to design an algorithm to learn

the edge monitoring switches per flow to better deploy our PR algorithm.

7.3 Heavy Distinct Counts

We have described count-based heavy hitters in Section 4.2. However, network op-

erators often need to identify the heavy distinct counts. For example, operators try

to identify the potential victims of a DDoS attack once vicitims receive DNS packets

from more than T distinct senders. Counting is not effective when computing distinct

counts.

Consider the case where a destination receives traffic from distinct sources s1, s2 at

one switch and distinct sources s1, s3 at another switch. Both switches would report

two distinct flows, but globally, there are three. Once the switch summarizes the

distinct element set into a count, it cannot be combined with any other summary

with any fidelity.

Fortunately, we can leverage a cardinality estimation algorithm known as Hyper-

LogLog [10]. Hyperloglog can be performed at distributed sites and later merged

without any loss of accuracy. Also, it is memory-efficient, so it can be implemented

in switches. The key intuition behind this algorithm is that by storing a maximum

value based on random inputs, a good estimate of the size of a set can be derived.

These maximum values are stored in m buckets; when merging two estimates together,

keeping the maximum value from each of the m buckets will produce a new estimate

based on both previous estimates. Therefore, we can use this algorithm to generate
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local estimates, compare them against local thresholds, and merge the results at the

controller just as with deterministic counts.

Implementation Implementing the HyperLogLog algorithm in the data plane is

much more challenging than implementing adaptive thresholds due to the complexity

of the algorithm. To implement the HyperLogLog algorithm, we require m registers

to store a count. For each set that we want to estimate the cardinality of, i.e., count

distinctly, we compute a hash value (h) of that item and break it into two components:

an index i of p bits and a count c of leading zeros in the remaining |h| − p bits. The

maximum of c and the value stored in the ith register is written back to that register.

The harmonic mean of the values stored in these m registers determines the estimate.

Our implementation that uses adaptive thresholds and the HyperLogLog algorithm

is less than 1600 lines of P4 code and uses less than 15% of available SRAM on the

Barefoot Tofino switch.
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8. Conclusion

Detecting heavy hitters is an indispensable tool in managing and defending modern

networks. We designed two efficient algorithms and implemented a prototype for

detecting network-wide heavy-hitters with commodity switches. Our evaluation with

real-world traffic traces demonstrates that by dynamically adapting per-key thresh-

olds (ALT) or the number of monitoring switches (PR), we can reduce the commu-

nication overhead required to detect network-wide heavy hitters while maintaining

high accuracy.

As richer network traces become available from multi-switch networks, we can

further explore the efficacy of our methods for detecting network-wide heavy-hitters.

Simulating any multi-switch traffic dynamics with the available data would have been

inherently synthetic. With additional data, we could better explore how the reac-

tiveness of the EWMA to short-term fluctuations affects the overall communication

overhead. We could improve ALT approach by starting with local thresholds learned

from historical training data, given the availability of such data. Also, we could eval-

uate how the learning monitoring switches algroithm would improve the performance

of our PR approach with additional data.

In conclusion, ALT approach achieves perfect accuracy and reduces the commu-

nication overhead in a small network comparing to the best-known error-free ap-

proaches. Our PR approach balances accuracy and communication overhead in a

large network. In the real world, network operators can deploy these two algorithms
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to detect network-wide heavy hitters, depending on the scale of their networks, cost

they like to pay and the accuracy they intend to achieve.
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