
High-throughput and Flexible Host Networking for Accelerated Computing

Athinagoras Skiadopoulos∗ 1 Zhiqiang Xie1 Mark Zhao1 Qizhe Cai2 Saksham Agarwal2

Jacob Adelmann3 David Ahern3 Carlo Contavalli3 Michael Goldflam3 Vitaly Mayatskikh3

Raghu Raja† 4 Daniel Walton3 Rachit Agarwal2 Shrijeet Mukherjee3 Christos Kozyrakis1

1Stanford University 2Cornell University 3Enfabrica

Abstract

Modern network hardware is able to meet the stringent band-
width demands of applications like GPU-accelerated AI. How-
ever, existing host network stacks offer a hard tradeoff be-
tween performance (in terms of sustained throughput when
compared to network hardware capacity) and flexibility (in
terms of the ability to select, customize, and extend different
network protocols).

This paper explores a clean-slate approach to simulta-
neously offer high performance and flexibility. We present
a co-design of the NIC hardware and the software stack to
achieve this. The key idea in our design is the physical sep-
aration of the data path (payload transfer between network
and application buffers) and the control path (header pro-
cessing and transport-layer decisions). The NIC enables a
high-performance zero-copy data path, independent of the
placement of the application (CPU, GPU, FPGA, or other
accelerators). The software stack provides a flexible control
path by enabling the integration of any network protocol, exe-
cuting in any environment (in the kernel, in user space, or in
an accelerator).

We implement and evaluate ZeroNIC, a prototype that com-
bines an FPGA-based NIC with a software stack that inte-
grates the Linux TCP protocol. We demonstrate that ZeroNIC
achieves RDMA-like throughput while maintaining the bene-
fits of robust protocols like TCP under various network per-
turbations. For instance, ZeroNIC enables a single TCP flow
to saturate a 100Gbps link while utilizing only 17% of a sin-
gle CPU core. ZeroNIC improves NCCL and Redis through-
put by 2.66× and 3.71×, respectively, over Linux TCP on
a Mellanox ConnectX-6 NIC, without requiring application
modifications.

∗Work partially done while interning at Enfabrica.
†Affiliated with Amazon Web Services, work done while at Enfabrica.

1 Introduction

Modern datacenter applications, such as artificial intelligence
(AI), data analytics, and distributed storage, are increasingly
reliant on moving massive amounts of data over the network.
As a result, datacenter operators are deploying systems ca-
pable of hundreds of Gbps of host networking. For instance,
the latest NVIDIA DGX-B200 is capable of 3.2T bps of net-
working – 400Gbps for each of the 8 GPUs [26]. As compute,
memory, and link throughput continue to scale, driven by tech-
nologies such as accelerators [5,25,49], the end-host network
stack is rapidly becoming a dominant bottleneck for these ap-
plications [12,13,72,95]. Therefore, the problem of designing
host network stacks has come to the forefront.

Existing host network stacks offer a hard tradeoff between
performance (in terms of sustained throughput when com-
pared to network hardware capacity) and flexibility (in terms
of the ability to select, customize, and extend different net-
work protocols). On the one extreme, RDMA-based host net-
work stacks [8, 34, 38, 54] are able to achieve high perfor-
mance, but provide minimal to no flexibility. With network
protocols baked into the hardware, adapting the protocol to
better suit the needs of emerging applications or deployments
is either not feasible or requires the time-consuming process
of hardware modification. As a result, existing RDMA-based
deployments remain fragile due to the possibility of head-of-
line blocking, deadlocks, congestion spreading, and/or host
congestion [1, 2, 44, 45, 63, 65, 74, 96]. On the other extreme,
the Linux network stack provides flexibility with a variety of
time-tested protocols [4, 11, 14, 39, 47, 68] and mechanisms
that enable the incorporation of new protocols [2, 10, 13]. Un-
fortunately, the current Linux stack falls significantly short
of exploiting the high-throughput capabilities of modern net-
work hardware [12]. Recent host network stacks [72,89] offer
operating points between these two extremes, but suffer from
a similar performance-flexibility tradeoff.

We present a clean-slate co-design of the host network
hardware and the software stack that simultaneously achieves
high performance and flexibility. Our design’s key driving



idea is the physical separation of the data path (payload trans-
fer between network and application buffers) and the con-
trol path (header processing and transport-layer decisions)
within the host. Specifically, our NIC hardware enables a
high-performance data path between the network and the
application. The NIC splits the headers from the payload,
and directly transfers the payload from/to application buffers,
without requiring any intermediate data copy (zero-copy). Our
software stack enables a flexible control path. Users can plug
in existing transport stacks, which operate on packets (sans
payloads) as before, to make decisions on when to send data
(e.g., congestion and flow control) and notify applications
upon completion (e.g., acknowledging in-order byte streams).
The software control stack orchestrates memory management
and signaling between the NIC, the transport stack, and appli-
cations. Importantly, our design is independent of the location
of application buffers (CPU, GPU, FPGA, or other accelera-
tors) or the transport protocol’s execution environment (in the
kernel, in user space, or even in an accelerator).

The key challenge in realizing the physical separation of
data and control paths is to maintain correct semantics (in-
order, exactly-once data delivery) even in presence of network
perturbations (data corruption, drops, replication, reordering,
etc.). Our hardware implements the bookkeeping needed to
correctly transfer incoming data to their designated memory
destination even in the presence of network perturbations,
while our software stack coordinates across the hardware and
the application layer to maintain correct protocol semantics.

We demonstrate the benefits of our approach using an
end-to-end prototype, ZeroNIC. Our prototype combines an
FPGA-based NIC connecting to CPU and GPU memory, with
a software stack integrating in-kernel Linux TCP. Our pro-
totype realizes two APIs: the libibverbs API [67] used by
current RDMA applications and a streaming API for general-
purpose socket applications. For both APIs, ZeroNIC supports
zero-copy data transfers between the NIC and application
buffers in CPU or GPU memory. We evaluate ZeroNIC across
a variety of workloads and network conditions. ZeroNIC
achieves RDMA-level throughput with low CPU utilization.
For instance, we show that ZeroNIC allows a single TCP
flow to saturate a 100Gbps link while utilizing only 17% of a
single CPU hyperthread. In comparison, the Linux host net-
work stack on a Mellanox ConnectX-6 NIC achieves at most
50Gbps for a single TCP flow at 100% CPU utilization. We
also demonstrate that ZeroNIC enables a high-performance
zero-copy data path between GPU devices, achieving 2.66×
higher throughput in NCCL benchmarks [24], NVIDIA’s core
AI networking library. Finally, we show that ZeroNIC benefits
from the use of robust network protocols such as the TCP
implementation in Linux. ZeroNIC maintains its performance
under drops and fairness across flows.

To the best of our knowledge, our work is the first to support
both send and receive-side zero-copy for reliable protocols
like TCP with no constraints (e.g., MTU alignment, API mod-

ifications). It supports accelerator devices (e.g., GPUs) and
enables protocol termination anywhere (e.g., CPU or control-
plane accelerators) without limiting protocol semantics.

2 Motivation and Background

Our goal is to enable high-performance host networking re-
gardless of the data destination (host or accelerator memory)
and where/how the control plane is implemented. This flexi-
bility allows the development and tuning of network protocols
that improve fabric behavior and overall network efficiency
as applications evolve and systems scale.

2.1 RDMA: Performant but Inflexible

Many network-intensive applications, such as AI training us-
ing GPUs, frequently use RDMA solutions such as InfiniBand
(IB) [6] or RoCE [7]. RDMA solutions bypass the OS network
stack and its CPU overheads by terminating the network pro-
tocol in specialized hardware and firmware in RDMA NICs
(RNICs). RNICs enable high throughput by DMAing network
payloads directly from/to application buffers in CPU or GPU
memory using information encoded in send/receive requests.

The disadvantage of RDMA solutions is the lack of flex-
ibility. To achieve high throughput, RDMA solutions typi-
cally required a lossless fabric such as IB, reliant on certified
(short-distance) cabling and specialized switches. Such net-
works were forced to adopt a restrictive topology, avoiding
over-subscription and adding many redundant paths to avoid
drops [21,93]. To provide a similar quality-of-service on lossy
fabrics, RoCE solutions have increasingly required secondary
mechanisms to eliminate drops in the face of congestion, such
as priority flow control (PFC) [46] and watchdogs [8, 38].
RoCE solutions still suffer from a host of well-documented
challenges, such as end-host congestion [55], major perfor-
mance degradation under unavoidable network perturbations
(e.g., packet drops or reorderings) [44, 103], and excessive
buffer requirements [44]. Addressing these challenges is ar-
duous because RoCE’s control path is explicitly tied to the
implementation of the RNIC, requiring collaboration with
and intervention by RNIC vendors. For example, Microsoft
required support from its RNIC vendor to address livelocks
caused by go-back-0 retransmission [38].

2.2 Kernel Networking: Flexible but Slow

The Linux network stack, built around the TCP/IP protocols,
runs on a vast range of commodity hardware, supports di-
verse topologies, and can adapt to highly-variable network
conditions and failures. Its resiliency stems from the fact that
developers can optimize network protocol parameters includ-
ing the congestion scheme and buffer sizes for the needs of
emerging applications and deployments.
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Figure 1: Throughput and receiver CPU utilization with and
without receive-side (RX) emulated zero-copy. 100% means
that a hyperthread is fully utilized. “CPU sys” refers to the
hyperthread running protocol processing. “CPU soft” refers
to the hyperthread running the application and the software
interrupt handler.
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Figure 2: CPU breakdown for the TCP receiver with and with-
out emulated RX zero-copy, normalized to the CPU utilization
needed to achieve 100Gbps of throughput.

Unfortunately, the Linux stack cannot achieve high through-
put (≥ 100Gbps) as single-thread CPU performance is a
key bottleneck [12]. Specifically, receive-side data copies
from kernel to application buffers dominate end-to-end perfor-
mance, limiting a single TCP flow even after major optimiza-
tions (e.g., TSO/GRO, jumbo frames, and packet steering).

We built a proof-of-concept experiment to showcase the
single-flow performance potential of removing the data copy.
We modified the iperf benchmark [28] to support send-side
zero-copy via the Linux sender ZC API [53]. We emulated
receive-side zero-copy by truncating payloads in the kernel,
avoiding the additional copy to user space 1. We enabled TSO,
GRO, and jumbo frames. We also pinned the iperf process and
steered the receiver flow so that the interrupt handler (soft)
and TCP processing (sys) are located in the two hyperthreads
of the same physical core (sharing the L1 cache).

Figure 1 shows the sustained throughput and CPU utiliza-
tion. Even with send-side zero-copy on, regular kernel net-
working can only achieve 50Gbps for a single flow. Similar
to [12], we observe that CPU utilization is the bottleneck –
specifically the TCP protocol processing receiver core (sys).
Throughput cannot scale and the interrupt handling thread
(soft) is underutilized. Figure 2 shows that the majority of
CPU cycles for TCP processing are spent on data copies. En-

1Code available at https://github.com/enfabrica/iperf

abling receive zero-copy eliminates data copy overheads and
drastically improves throughput, saturating the 100Gbps link.
This experiment suggests that a flexible receiver zero-copy
mechanism that copies data to application buffers in CPU,
GPU, or storage devices can enable a wide range of protocol-
s/stacks, including Linux TCP and other user space or hard-
ware protocols/stacks [32, 48, 51, 72, 76, 77, 90], to meet the
throughput requirements of network-intensive applications.

2.3 Towards Control & Data Path Separation

The core challenge with existing network solutions is the tight
integration of the control and data paths, leading users to either
integrate the data path into the kernel, sacrificing performance,
or embed the control path in hardware, sacrificing flexibility.
We propose the physical separation of these two paths. The
data path provides robust support for zero-copy from NICs
to application buffers on devices like CPUs and GPUs. The
control path supports various transport protocols executing in
software or hardware. This separation allows the control path
to be optimized without overhauling the efficient data path.

There are many implementations of send-side (TX) zero-
copy such as those in RDMA NICs, the MSG_ZEROCOPY
flag in the Linux send system call [27], and the io_uring API
for asynchronous I/O [18]. In contrast, existing receive-side
(RX) zero-copy approaches are severely limited.

The challenge of page alignment. Linux includes a
page-remapping mechanism for RX zero-copy in socket
APIs [17, 59]. It allows the NIC to DMA the entire payload
to a memory location and then remap the payload’s physi-
cal address to the application buffer’s virtual address at page
granularity. This approach requires page-aligned payloads,
making it difficult for applications to transmit arbitrary data
lengths, as they can do with the socket or verbs APIs. The
page-alignment requirement may also be incompatible with
GPUs or flash devices [3], limiting the applicability of this
approach. Moreover, page-remapping incurs high CPU over-
heads due to the need for TLB flushing after altering page
table entries [59, 94].

The challenge of API compatibility. Several propos-
als facilitate RX zero-copy by altering application inter-
faces [9, 50, 79, 101, 102]. They require extensive changes
to applications using common APIs like sockets or IB verbs,
which typically rely on read/write operations from a contigu-
ous buffer. These proposals asynchronously transfer packets
from the NIC to application buffers, either as a linked list
of scattered payloads or with headers and data interleaved
in a buffer, which are released after being processed by the
application. Hence, applications must adapt to handling non-
contiguous data addresses during read operations.

The challenge of packet perturbations. Packet reorder-
ing, drops, and retransmissions disrupt the expected order of
packet arrivals and complicate the correct copying of payloads
into application buffers. A simple solution, employed by many

https://github.com/enfabrica/iperf


RNICs, is to discard out-of-order packets and default to a
go-back-N retransmission strategy, at the expense of through-
put (§2.1). An alternative is to temporarily buffer out-of-order
packets in the NIC until the missing packets arrive, potentially
through a selective retransmission mechanism. This approach
can quickly exhaust the SRAM capacity of state-of-the-art
NICs [74, 96], especially in large bandwidth-delay-product
(BDP) environments such as hosts with 400Gbps+ network-
ing per GPU, and limits the effective rate at which data is
transferred to the application.

The challenge of reliable protocols. Some systems sac-
rifice reliable transport semantics, directly copying incom-
ing payloads to the next-available application buffer. This
limits RX zero-copy support to unreliable protocols like
UDP [15, 57]. Recent attempts to support reliable connec-
tions (RC) have constrained applicability. SRNIC [96] han-
dles sequential and out-of-order packets via separate fast and
slow data paths. IRN [74] requires the sender to explicitly
define a receiver buffer identifier in the header. 1RMA [91]
requires application involvement for managing ordering and
handling failure recovery. Flor [62] separates the control and
data paths for RDMA transports to reconcile the control path
differences across different RNIC generations. However, Flor
primarily supports unreliable connections (UC). To extend to
reliable semantics, Flor uses an additional reliability sequence
number in the RDMA work request and requires the sender
and the receiver to establish a common chunk size for data
transfers. Flor must dynamically tune the chunk size to trade-
off between high throughput (larger chunks) and managing
congestion, drops, and retransmissions (smaller chunks).

Other related work. Nicmem [80], PayloadPark [36], and
Ribosome [87] have recently explored separating the control
and data paths in distinct contexts from our goals. They focus
primarily on NFV (Network Function Virtualization) work-
loads that do not process payloads, but rather operate only
on metadata to deliver packets to their next destination. To
optimize resource usage such as PCIe traffic, they split packet
headers and payloads and send only the header to the host.
SplitRPC [56] uses a control and data path separation, but it
is limited to unreliable protocols like UDP and use-cases like
end-user requests/responses for AI inference. Our work tack-
les a broader range of applications that continuously process
payloads and benefit from transport layer functionalities.

3 Performant and Flexible Host Networking

We co-design the hardware and software to physically sepa-
rate the data and control paths in host networking, but logi-
cally couple them after separation. The physical separation
enables a high-throughput, zero-copy data path to applica-
tion buffers for payloads, and an independent control path
for header processing. Figure 3 provides a high-level view of
our approach. The data path connects to any endpoint (e.g.,
accelerators, storage, host memory, etc.), and the control path

Application 
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header

payload
Application

Sent/Received 
notification

Transport 
Protocol

NIC

packet 
split/merge

Figure 3: Host networking with physically separated control
and data paths.
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Figure 4: Examples of control and data path separation.

executes arbitrary transport protocols in any execution envi-
ronment (in user or kernel space software on a CPU, in Smart-
NIC software or hardware, or even in a protocol accelerator),
as illustrated by the two examples in Figure 4. The logical
coupling allows the control path to have full control of pro-
tocol semantics, i.e., when data is correctly received or sent,
how to handle events like reorderings and retransmissions,
and when to notify the application – even if the transport
protocol and data live in completely different devices.

The key challenge in providing a zero-copy data path man-
aged by transport protocols external to the NIC is that the NIC
must decide if, when, and where to copy incoming payloads,
prior to the transport protocol addressing out-of-order deliv-
eries and retransmissions. Additionally, regardless of when
data is copied, it should only be exposed to the application
when protocol semantics allow (e.g., in-order delivery).

We begin by reviewing how packets travel throughout our
network stack (§3.1). The NIC (§3.2) splits and merges head-
ers and data to enable zero-copy data transfers directly to
arbitrary devices (e.g. GPUs), even under reorderings, retrans-
missions, and drops. Our software stack is composed of the
control stack and the provider library. The control stack (§3.3),
which can execute in an arbitrary execution environment (e.g.,
in the kernel as a driver) is the coordinator between the NIC,
an arbitrary transport protocol, and the application. The trans-
port protocol acts only on packet headers, while the control
stack proxies its actions to data in remote memory (i.e., NIC
or application buffers). Our provider library implements both
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message and streaming APIs (§3.4) to allow an easy mapping
of popular networking libraries onto our design. Finally, we
discuss how we address various challenges in the host net-
work stack such as retransmissions and compatibility with
current optimizations (§3.5).

3.1 Receive and Send Path Overview
Figure 5 illustrates the receive (RX) and send (TX) paths
through our stack.
Receive path. 1 A receiving application begins by perform-
ing an initialization step using the provider library. As usual,
this step establishes a connection and binds to a network in-
terface. It also allocates application and NIC queues (§3.3)
to coordinate between the control stack, the provider library,
and the NIC hardware. The application also registers shared
memory with the NIC for zero-copy transfers. These memory
buffers can be anywhere in the system (e.g., GPU memory).
Applications can periodically register (and deregister) shared
memory space as needed. 2 After initialization, the applica-
tion invokes receive calls and the provider starts polling for
completions. For every receive call, the provider enqueues
an RX request entry into the application queue. RX request
entries contain the receive call’s buffer location and length.
3 The control stack steers the entry to the appropriate NIC

queue. The NIC parses RX request entries to store application
buffer information into dedicated hardware structures.

4 As packets arrive in the NIC from the sender, the NIC
parses their headers and decides on dropping, buffering, or
accepting each packet (§3.2). When a packet is accepted, the
NIC splits it into the header and the payload. 5 The NIC
identifies the payload’s correct memory location in the desig-
nated device buffer and DMAs it accordingly. 6 The NIC
creates and forwards RX header entries, composed of headers
and metadata, to NIC queues leading to the control stack. 7
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Figure 6: NIC hardware block diagram.

When the data DMA completes, the control stack forwards
the headers from each RX header entry to the transport proto-
col. The protocol processes the header, reasoning about data
acknowledgment (e.g., ACKing only in-order data). 8 When
the protocol allows, the control stack posts a completion entry
into the application queue.
Send path. The send path is also designed so that the trans-
port protocol maintains control over data transmission. 1
As with the receive path, the application begins with initial-
ization steps that establish a connection, bind with a network
device, and allocate and bind with the application and NIC
queues needed for coordination. 2 Upon a (non-blocking)
send, the provider library enqueues a TX request entry to the
application queue. The TX request entry contains the applica-
tion buffer’s location and length. 3 The control stack then
forwards the entry to the transport protocol. 4 The transport
protocol creates packet headers and allows progress according
to its flow and congestion control mechanisms. When trans-
mission is allowed, the control stack forwards the constructed
header alongside the TX request entry to the NIC queue.

5 The NIC parses the TX request entries in-order and
DMAs data from the application buffers directly into NIC
memory. 6 The NIC then merges data with headers to form
packets, optionally applying optimizations such as TSO, and
transmits packets over the network. 7 Upon transmission,
the NIC enqueues completion entries back to the NIC queue.
8 The control stack polls for completions and forwards them

to the application queue. 9 Finally, the provider library polls
for entries and notifies the application upon completion.

3.2 NIC Hardware Design
Figure 6 presents the NIC hardware design that implements
key data structures to split (merge) packets, transfer headers
and payloads to (from) the control stack and application, and
track payload placement on a per-flow basis so that data can
be zero-copied to their correct application buffer.
Memory management hardware data structures. The NIC
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implements the data structures shown in Figure 7 to track
application buffers. At initialization, the application registers
a set of Memory Regions (MR) using the provider library. An
MR is a contiguous part of the application’s virtual address
space. The NIC maintains an MR Table entry for each regis-
tered MR. Virtual MR addresses are translated via an IOMMU
in the NIC, which caches translations for efficiency. MRs can
be anywhere in the system reachable by the IOMMU. For ex-
ample, in the context of GPUs, CUDA allocates GPU memory,
associates it to the PCIe address space (PCIe BAR), and maps
it to host application buffers. In this case, our NIC IOMMU
stores CPU to PCIe address space translations. Meanwhile,
the NVIDIA driver translates between PCIe and GPU mem-
ory, as in GPUDirect.

The control stack creates a Memory Segment (MS) for each
send and receive operation. An MS corresponds to a con-
tiguous user buffer and is defined by its MR ID, its offset
within the MR, and its length2. As the application makes
asynchronous send and receive calls, the control stack en-
queues the RX and TX MSs to the NIC into a per-flow MS
List. The MS List is essentially a linked-list containing the
application buffers involved with pending requests. Note that
each flow (and thus MS List) maps to a distinct NIC queue in
the control stack.

2For simplicity of presentation, we assume contiguous Memory Segments,
although MSs may map to more complex data structures.

The Flow Table tracks flow metadata used for incoming
packets. The most important fields in each Flow Table entry
are the flow ID used to index to the flow’s corresponding MS
List, and the flow cursor. The flow cursor is the sequence
number corresponding to the last in-order consumed packet
in the flow. The MS List and the flow cursor are combined to
make decisions over the packet’s payload, as explained below.
Receiving a packet. The hardware structures described above
allow the NIC to map incoming packets to application buffers
for zero-copy DMA, as shown in Figure 6. We focus on the
process of handling reliable protocols. Unreliable protocols
simply land data in the next available MS.

The NIC parses the header of an incoming packet to con-
struct a tuple that indexes the Flow Table (Figure 7), and
obtain the corresponding MS List and flow cursor. The MS
List and flow cursor are combined with the header’s sequence
number to derive the packet’s position in the flow. The NIC
then decides one of four actions: accept, drop, buffer, or defer.

We begin with Case (a) in Figure 8. In the absence of
network perturbations, the arriving packet contains the next
in-order unconsumed payload that the flow is expecting, i.e.,
the data immediately following the flow cursor. The packet
is accepted: the hardware examines the top MS in the flow’s
MS List and uses the MS and MR information to derive the
application address to DMA (zero-copy) the payload. The
cursor is updated to reflect the next unconsumed position. MS
boundaries and the size of the payload do not have to align.
The packet’s payload may consume a fraction of the MS or
may need to span into the next MS in the list. Fully consumed
MSs are retired when the flow cursor passes them.

Case (b) receives a packet with a sequence number that
suggests all the bytes in the payload have been previously
received and ACKed according to the flow cursor. This may
be due to a re-transmission when an ACK is lost or delayed.
This packet is dropped and no further action is taken. Case (c)
receives a packet that includes some bytes that are previously
ACKed and some new bytes. The hardware drops the repeated
part and accepts the rest of the packet as in Case (a).

Case (d) receives a packet beyond the flow cursor (i.e., with
a hole). This may be the result of packet reordering or a drop
of an earlier packet. The hardware will walk the MS List, and
by accumulating MS lengths, it will identify the right segment
for the data. The data will be accepted and DMAed to the
proper application buffer address. Even if future MSs are fully
filled, they will not be retired until the cursor passes them.
The control stack periodically sends the latest acknowledged
byte to the NIC to update the cursor.

Finally, under rare conditions, a packet may not match any
MS (Case (e)). This may be the result of excessive drops
or the receiver posting buffers at a slow pace. We can drop
the packet, buffer it in NIC memory and retry later, or defer
the packet to a non-zero-copy path. We implemented the last
option (defer) in our prototype system (§4). We also use this
approach if a packet arrives for a flow that has no Flow Table



entry (i.e., the table has reached its capacity limits).
When a packet is accepted, it is passed to the Split/Merge

unit shown in Figure 6, which splits the packet into header
and payload. A DMA engine copies payload data directly to
application memory (e.g., in CPU user space or GPU device
memory). Another DMA engine then forwards headers to the
control path address space (e.g., in CPU kernel memory).

Note that the NIC lands data in application memory before
any transport processing happens. It also allows the overwrite
of future data if a packet is transmitted multiple times since
their MSs are not retired. However, correctness is maintained
because the application is notified when it is safe to use its
buffer by the control path, after protocol processing is done.
Sending a packet. The send hardware path is simple, as
packets are sent in the order of requests. Upon receiving a
header from the control stack, MSs enter the MS List and are
handled by hardware in FIFO order. A DMA engine copies
the payload directly from the corresponding application buffer.
The Split/Merge unit merges the header and payload to form
a packet, which is transmitted over the network.
Hardware requirements for scalability. Maintaining per-
flow state raises scalability concerns. Our design supports
10K high-performance flows with ~10MB of NIC memory.

Most proposed structures have a low memory footprint.
To support 10K flows, the Flow Table and MR Table require
~700KB and ~100KB respectively, to store all necessary meta-
data. MS Lists are the most resource-intensive structures. To
support long, potentially out-of-order, packet runs with low
memory footprint, our NIC does not buffer payloads. Instead,
the NIC DMAs future payloads to their correct memory des-
tination by finding the correct MS. For maximum efficiency,
we allocate a minimum number of MS List entries per flow to
keep the flow pipeline humming, and pull additional MS List
entries as needed (a CIR/PIR – committed/peak information
rate system) [43].

For example, a large bandwidth-delay-product (BDP) of
100Gbps ·0.2ms = 2.5MB would require 2.5MB

4KB = 625 MSs.
Instead of allocating 625 entries for all 10K MS Lists (10K ·
625 · 8B = 50MB), we allocate a minimum of 128 commit-
ted entries to each MS List, while supporting thousands
of peak entries (e.g. 8K) that are allocated to flows on de-
mand from a large entry backing store (e.g. 1M entries). For
10K high-performance flows, the total buffer requirement
is max(1M ·8B,10K ·128 ·8B) = 9.77MB. Downsizing MS
Lists adds the additional requirement to buffer RX NIC re-
quests during the lifetime of their respective MSs. Besides
supporting thousands of zero-copy flows, our design addi-
tionally supports non-zero-copy flows that do not occupy the
newly proposed data structures.

The required hardware resources for our NIC are signifi-
cantly lower than those of most RNICs [96]. Modern Smart-
NICs also require several processor cores, tens of MBs of
processor caches, and external memory like DDR, LPDDR,
or HBM that can handle payload buffering for high BDPs.

3.3 Control Stack Design

The goal of the control stack is to enable an arbitrary trans-
port protocol with our zero-copy data path, while maintaining
efficiency and correctness. The control stack does so by sep-
arating and defining a clean interface between three compo-
nents: a) the application, b) the transport protocol, and c) the
NIC. The control stack maintains connections between each
application and the NIC using two sets of queues.
Application queues. The control stack is co-located with
the transport protocol 3, application queues are allocated in
shared memory between the control stack and the application,
and connect the provider library with the control stack. Each
set of application queues contains a send queue, a receive
queue, and their respective completion queues. TX and RX
requests are enqueued by the provider library into the send and
receive queues, respectively, while the control stack notifies
applications upon completions via the completion queue.
NIC queues. The control stack also establishes a set of NIC
queues for TX and RX requests, incoming RX header entries,
and completions. NIC queues connect the control stack to
the NIC. They are implemented in the control stack and are
accessed by the NIC via DMA. In the send direction, the con-
trol stack enqueues MSs and headers to the NIC, constructed
from TX requests enabled by the transport protocol. In the
receive direction, the control stack sends MSs from RX re-
quests to the NIC. As they are consumed by incoming data,
the corresponding headers are split from incoming packets to
form RX header entries directed to the control stack.
Supporting arbitrary transport protocols. Current solu-
tions that leverage a single queue pair to provide zero-copy
functionality struggle to support protocols not executing in
either end of the queue (in the NIC or in user space). In con-
trast, our control stack uses two separate sets of queues to
interpose the transport protocol between the application and
NIC. The control stack polls the application send queue for
requests and the NIC queue for receive-path headers and in-
vokes the transport protocol to generate send-path headers and
acknowledgments, respectively. The control stack can sup-
port arbitrary transport protocols by translating application
requests to the respective transport API (e.g., TCP sockets).
Enhancing efficiency. In addition to eliminating data copies,
the control stack benefits from reduced system call and inter-
rupt overheads when submitting work and receiving comple-
tions. Specifically, polling on application queues avoids sys-
tem calls, resulting in performance benefits similar to mech-
anisms such as io_uring [18]. Since the control stack is
co-located with the transport protocol, it directly invokes it
without system calls. Similarly, the control stack polls the NIC
for completions and headers, avoiding software interrupts. To
address applications with sparse communication, mechanisms
such as combining polling and doorbells can also be applied.

3We assume the control stack executes as a kernel module; §6 discusses
supporting transport protocols external to the kernel (e.g., in user space).



Maintaining correctness. Finally, the control stack maintains
correctness by logically coupling the physically separated
control and data paths. On the sender side, the control stack
invokes the protocol’s flow and congestion control to enqueue
control entries in the NIC and to trigger data DMAs. This
is equivalent to the congestion control algorithm acting on
headers physically accompanied by their data. On the receiver
side, payloads are separated from their headers in the NIC
and DMAed directly to application buffers. RX header en-
tries sent to the control stack incorporate information (e.g.
sequence number) to bind to their corresponding data. Data
becomes visible to the user upon consulting the protocol’s
acknowledgment policy (e.g., in-order delivery). Thus, the
transport protocol maintains ownership of the data without
ever touching the data itself, allowing us to reap all the bene-
fits of current transport protocols (robustness, fairness, etc.).

3.4 API Design

The primary goal of our API is to allow current applications
(more precisely, current networking libraries) to use our net-
work stack with minimal effort. Current applications use ei-
ther message-based or streaming semantics. Message seman-
tics (e.g., RDMA verbs) require the network stack to deliver
messages corresponding to contiguous memory buffers. A
message size is well-defined by the side initializing commu-
nication (one- or two- sided). Streaming interfaces (e.g., sock-
ets) allow senders to continuously transmit byte streams of
arbitrary length. The receiver can keep invoking receive calls
to consume data in the stream as the network stack progres-
sively signals reception on a byte-stream basis. The stream
memory layout can be irregular (non-contiguous) and differ-
ent on the sender and receiver sides. Our design explicitly
supports both message-based and streaming semantics. We
implement the libibverbs API [67] and a socket-like interface.
Supporting message interfaces. Most high-performance
applications rely on message semantics [24, 33, 37, 71, 73].
We support their transparent interoperability by implement-
ing the libibverbs API. We dynamically link the libibverbs
verbs_context_ops to our provider library. The provider in
turn connects to our control stack and exposes our application
queues to the user as struct ibv_qp.

Supporting streaming interfaces. Our design also sup-
ports streaming applications by exposing a socket-like API,
with slight modifications to support our software stack. The
application performs initialization similar to libibverbs (find
a device, allocate a protection domain for memory regions,
and initialize queues). Connection is established via the or-
dinary socket API (not requiring our fast data path). The
above structures are wrapped in a struct comm_ctx. send
and recv calls are asynchronous and extended with an argu-
ment containing the comm_ctx. To relieve the responsibility
of registering and de-registering memory regions from the
application, our send and recv calls post their buffer argu-

ment as an MR on their invocation. MRs can reside within
any endpoint.

3.5 Addressing Challenges

Retransmissions. Section 3.2 explains how the NIC chooses
the correct MSs, including when packets are retransmitted.
However, in the presence of potential retransmissions, an al-
ready consumed MS may need to be reused multiple times.
Both TX and RX sides post buffers that ultimately create MSs
which must therefore be carefully retired or replenished.

On the sender side, the control stack clones the socket
buffer (containing only metadata), before sending it to the
transport stack and keeps it alive until the protocol receives an
acknowledgment. If the transport decides on retransmitting
the packet, the socket buffer is cloned again. The hardware
will create the same MS and the retransmission will be ac-
commodated. On the receiver side, the NIC only retires MSs
directly following the flow cursor (§3.2), allowing overwrites
of future retransmitted data. Permitting overwrites simplifies
our retransmission handling logic, especially when arriving
packets contain both new and previously delivered data.
Multiple flows. Multiplexing flows in the same NIC queues or
MS Lists creates significant complexity in tracking which flow
is served on each access. We bypass this issue by assigning
NIC queues on a per-flow basis. Before binding with a NIC
queue, the control stack creates a flow entry rule in the NIC
Flow Table. The unique flow ID is used to index NIC queues
and MS Lists, ensuring exclusivity. Hence, zero-copy flows
are limited to the number of queues supported by the NIC.
Despite this issue, we support large enough flow counts with
moderate resource requirements (§3.2).
Associating messages with application buffers. Our design
supports message semantics with a streaming protocol under-
neath. In contrast to streams, messages do not have to fully
consume a user buffer before using the next one. Thus, there
is no clear signal to determine if an incoming packet is the
continuation of the currently served message (and MS) or
refers to the next message (and MS). We address this issue by
adding a message sequence number within the packet trans-
port header (e.g. in the “options” field for TCP). Combined
with the stream sequence number, we can point to the correct
MS and retire previous MSs that can be consumed even if
they were not fully filled.

Compatibility with offload mechanisms. Popular offload
optimizations such as GRO/LRO (receiver) and TSO (sender)
are compatible with our design. The control stack can trans-
parently support software offload mechanisms like GRO; con-
secutive headers will be merged into a single socket buffer
while their payloads have already been DMAed to consecu-
tive Memory Segments. The user is notified about the latest
in-order data, as usual. Similarly for LRO, headers are com-
bined in the NIC after they are split from their payloads. For
TSO, to support headers corresponding to more than an MSS



(maximum segment size), the NIC segments them into smaller
headers. The MS in the send request will now serve for multi-
ple DMAs, one for each segmented header.

4 Implementation

We implemented ZeroNIC, an end-to-end prototype of our
proposed design. ZeroNIC consists of an FPGA-based NIC
that implements the key hardware functionality (§3.2), a soft-
ware control stack that uses TCP as the transport protocol
(§3.3), and a provider library exposing the API (§3.4).
NIC. We built a 100Gbps Ethernet NIC prototype using
a commodity Xilinx Virtex UltraScale+ FPGA [97]. The
NIC has three x16 PCIe 3.0 links that connect to an x86
CPU socket and two NVIDIA GPUs (Quadro RTX 4000). In
essence, our NIC also acts as a switch between the CPU and
the GPUs.

The NIC-to-CPU link is controlled by the QDMA IP [99]
from Xilinx that presents the NIC as an endpoint device to
the CPU. The CPU is the PCIe root port device. The QDMA
block allows for DMA transfers in both directions at full PCIe
bandwidth (100Gbps). Each NIC-to-GPU link is controlled
by the Xilinx XDMA IP [98] that presents the NIC as the
root port device to the GPU. The GPU is a PCIe endpoint
device. Unfortunately, under this configuration the XDMA
block supports a limited number of outstanding PCIe transac-
tions. This imposes a hardware limit on the sustained PCIe
bandwidth for DMA transfers between the NIC and the GPU.
When moving data from the GPU to the FPGA (GPU is the
sender), the maximum PCIe bandwidth is 85.0Gbps. When
moving data from the FPGA to the NIC (GPU is the receiver),
the maximum PCIe bandwidth is 38.6Gbps. This limitation
of our FPGA system and IP blocks is not fundamental to our
design. An ASIC implementation of our NIC would saturate
available bandwidth for transfers to GPUs.

Our NIC implements a split/merge unit for the 100Gbps
Ethernet port. We use context-addressable memories to imple-
ment the MR Table and the Flow Table that is addressed by
the 5-tuple from the TCP/IP header (source and destination
addresses and ports, and protocol ID). The split-merge unit
connects to the PCIe ports. The ZeroNIC design is modular
and can be extended to support multiple 100Gbps Ethernet
ports using replicated split/merge units. It can also support
more root-ports in order to connect more than two GPUs.
Control Stack. We implemented the control stack as a Linux
kernel driver, which binds the provider library with the NIC.
The driver directly invokes the unmodified Linux kernel TCP
stack for protocol processing, translating application requests
and NIC queue entries into Linux TCP socket calls. While our
design supports arbitrary protocols and execution locations,
we select the kernel TCP protocol for the first prototype as
it is robust, but challenging to make performant (see §2.2).
Application queues live in shared memory between the kernel
and provider library. NIC queues live in the kernel’s virtual

Table 1: Evaluation system setup.

System TCP / RoCE Baselines ZeroNIC

NIC Mellanox ConnectX-6 Prototype built on
Xilinx Virtex UltraScale+

Topology
2-node direct-conn

100G eth
2-node direct-conn

100G eth (38.6G max for GPU)

Protocol TCP bbr / RoCEv2 RC TCP bbr

Setup
TCP: TSO, LRO, 9K MTU

RoCE: 4K MTU
TSO, GRO, 9K MTU

(always TCP)

CPU
32 core AMD EPYC 7502

L1,L2,L3: 2MB,16MB,128MB
32 core AMD EPYC 7502

L1,L2,L3: 2MB,16MB,128MB

network device. Both are implemented as ring buffers of user-
configurable sized entries.

5 Evaluation

We evaluate the efficiency of our host networking approach
using the ZeroNIC prototype, with the Linux kernel’s TCP
transport in our control stack. We compare the performance of
ZeroNIC against two popular baselines: a TCP baseline that
uses the Linux network stack without our high-performance
data path, and a RoCE baseline that terminates the transport
protocol in the NIC. Both baselines use a Mellanox ConnectX-
6 NIC. We summarize the specific configurations of these
systems in Table 1. All ZeroNIC measurements utilize large-
segment offloading (TSO and GRO) and jumbo frames, unless
otherwise specified. We do not require MTUs to be page-
aligned.

5.1 ZeroNIC Throughput Evaluation

ZeroNIC provides RDMA-level throughput to application
buffers in CPU memory at low CPU utilization. Table 2
shows the throughput achieved by ZeroNIC for a single flow
between a sender and a receiver application using CPU mem-
ory. We compare against the Mellanox RoCE baseline (MLX
RoCE), as well as against kernel TCP using the Mellanox
NIC (MLX TCP) with and without send-side zero-copy (TX
ZC on/off). We enabled send-side zero-copy for Mellanox
TCP as discussed in §2.2. For ZeroNIC and Mellanox TCP,
we pin the protocol processing thread, and either the queue
polling (for ZeroNIC) or the software interrupt handling (for
Mellanox TCP) thread to hyperthreads in the same physical
core to maximize cache locality.

Table 2 breaks down the receiver-side CPU utilization be-
tween the kernel (sys) and other CPU cycles (usr/soft).
sys includes protocol processing and the ZeroNIC driver,
while usr/soft includes the ZeroNIC provider library, inter-
rupts, and the application itself. Note that 100% CPU utiliza-
tion means that a single CPU hyperthread (2 per core) is fully
utilized. RoCE offloads protocol processing to the RNIC and



Table 2: Throughput and receiver-side CPU utilization for
CPU-to-CPU transfers. “CPU sys” refers to the hyperthread
running protocol processing and ZeroNIC’s driver. “CPU
usr/soft” refers to the hyperthread running the application,
software interrupt handler, and ZeroNIC’s provider library.

System
Throughput

(Gbps)
CPU

sys (%)
CPU

usr/soft (%)
Estimated
max Tput

MLX TCP
TX ZC off 43.89±1.35 94.15±3.45 29.55±2.62 46.61

MLX TCP
TX ZC on 50.63±0.55 100.0±0.00 32.36±0.80 50.63

MLX RoCE 98.03±0.00 N/A 9.58±0.81 N/A

ZeroNIC 96.37±0.60 17.20±1.96 33.50±1.11 560.29

1500 (1024 for RoCE) 4000 (4096 for RoCE) 9000
(no support for RoCE)
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Figure 9: Achieved throughput across multiple MTU sizes.
RoCE only supports power-of-two MTU sizes up to 4096B.

lands data directly into application buffers. Thus, we do not
observe sys CPU utilization. For ZeroNIC and RoCE, the
throughput benchmark polls for completions. We do not in-
clude cycles spent on the polling loop for ZeroNIC and RoCE,
as cycles spent polling do not limit throughput (e.g. the RoCE
application hyperthread shows as 100% utilized).

We observe that Mellanox TCP is constrained by CPU uti-
lization, despite the optimizations used (TSO, LRO, 9K MTU).
The Linux TCP stack uses a single thread for protocol pro-
cessing for each flow. With send-side zero-copy disabled, the
sender-side protocol processing thread saturates (not shown),
while the receiver thread almost reaches full utilization at
43Gbps. Enabling sender zero-copy exposes the receive-side
bottleneck as the receiver thread saturates at 50Gbps.

ZeroNIC copies RX data directly to user space applica-
tion buffers, eliminating the CPU cycles spent on data copy
as shown in Figure 2. This reduces the protocol processing
thread’s CPU utilization from 100% at 50.63Gbps to 17.20%
at 96.37Gbps. ZeroNIC also eliminates the majority of system
calls via the control stack’s polling architecture (§3.3), achiev-
ing an even lower usr/soft utilization than what baseline
TCP is projected to need at 100Gbps (§3.3, Figure 1). This
allows ZeroNIC to reach a throughput comparable to RoCE.
However, ZeroNIC maintains the flexibility of the Linux stack,

Table 3: Achieved throughput and receiver-side CPU utiliza-
tion for communication across different CPU/GPU endpoints.

System
Throughput

(Gbps)
CPU

sys (%)
CPU

usr/soft (%)
Estimated
max Tput

ZeroNIC
CPU-CPU 96.37±0.60 17.20±1.96 33.50±1.11 560.29

ZeroNIC
CPU-GPU 84.78±0.41 4 16.31±0.54 36.33±2.21 519.80

ZeroNIC
GPU-GPU 38.59±0.07 4 9.12±0.21 32.50±2.07 423.14

while RoCE implements its entire control path in the RNIC.
ZeroNIC is now bound by the link capacity. Given addi-

tional or faster links, ZeroNIC can scale beyond 100Gbps.
The last column in Table 2 estimates the maximum through-
put that ZeroNIC can achieve with the kernel TCP stack, by
scaling the protocol processing thread (sys) to saturate CPU
utilization (indeed, as we will see in Table 3, the usr/soft
thread has minor variations for different peak bandwidth set-
tings). ZeroNIC is projected to scale to > 500Gbps for a
single flow of the kernel TCP stack. This is a 11× higher
throughput than the current TCP network stack achieves for a
single flow using the Mellanox NIC.

Finally, Figure 9 demonstrates that ZeroNIC’s benefits hold
across various MTU sizes. For smaller MTUs (1500 or 1024
bytes), throughput on both ZeroNIC and RoCE slightly re-
duces due to higher packets-per-second DMA overheads.

ZeroNIC enables high-throughput data transfers di-
rectly to device (GPU) memory. ZeroNIC is able to extend
zero-copy benefits to arbitrary endpoints, including GPUs.
Hence, ZeroNIC can directly transfer data from and to GPU
HBM, bypassing the host CPU memory, similar to GPUDi-
rect [22]. Table 3 presents ZeroNIC’s single-flow throughput
for CPU-to-CPU, CPU-to-GPU, and GPU-to-GPU commu-
nication. In all cases, the control path uses the Linux TCP
stack. ZeroNIC is able to saturate the bandwidth supported by
the hardware on all paths, given the prototype IP limitations
discussed in Section 4: ~100Gbps for CPU-to-CPU, 85Gbps
for CPU-to-GPU, and 38.6Gbps for GPU-to-GPU transfers.

To validate that the ZeroNIC design scales to higher
throughput in the absence of prototype limitations, Table 3
also reports CPU utilization. As in Table 2, we split CPU
utilization between protocol processing and driver (sys) and
other cycles (usr/soft). As we can see by comparing the
CPU-to-CPU and GPU-to-GPU results, the usr/soft CPU
cycles do not strongly scale with maximum throughput. The
limiting factor for higher throughput for a single flow would
be the protocol processing overheads of the kernel’s TCP

4This is the maximum throughput supported by our hardware prototype
due to FPGA IP limitations (Section 4).
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Figure 10: NCCL throughput using ZeroNIC across different
flow sizes.

stack. Hence, we calculate the maximum throughput ZeroNIC
can reach when the kernel thread saturates (100% utilization)
to be above 400Gbps for CPU-to-CPU, CPU-to-GPU, and
GPU-to-GPU flows, This means that ZeroNIC can replace
the RoCE back-end network in GPU-based AI clusters that
is used to communicate activations and gradients during AI
training [75]. A ZeroNIC-based system with 8 GPUs would
require 8 CPU hyperthreads to support a total of 3.2T bps of
GPU-to-GPU networking, while gaining the benefits of using
any network protocol, such as the robustness of TCP.

5.2 End-to-End Workloads
ZeroNIC supports popular APIs (§ 3.4) that enable application
integration without modifications, simply by linking against
our provider library. We demonstrate this using three impor-
tant workloads; NCCL benchmarks, PyTorch, and Redis.

NCCL. NCCL [24] is the dominant communication library
for distributed AI using GPUs. It implements and optimizes
collective communication primitives that are commonly used
in AI training and multi-GPU inference. Different phases
of inter-node collective communication (all-reduce in data
parallelism, all-to-all in expert parallelism, point-to-point in
pipeline parallelism, etc.) use tens of megabytes as their col-
lective bucket size [58, 64, 85]. The number of flows scales
with the number of nodes (N). For example, NCCL’s tree algo-
rithm, the predominant inter-node collective implementation
algorithm, creates 2 logN flows per node [19]. Exposed com-
munication increases with system size [88], making network
performance critical, especially as cluster sizes increase be-
yond 10,000 GPUs and 1,000 nodes [20]. Improving NCCL
performance directly reduces exposed communication, lead-
ing to faster AI training and inference [41, 70, 82, 100].

We ran the broadcast NCCL benchmark [23]. For 2 nodes,
broadcast sends the full collective size unidirectionally be-
tween two ZeroNIC GPU servers. Since broadcast is the core
primitive used to build other collectives, improved broadcast
throughput directly translates to higher collective throughput
in general. We compare ZeroNIC to a baseline TCP imple-
mentation which uses the ZeroNIC NIC hardware, but always

Table 4: Average training epoch latency (in seconds) for dif-
ferent PyTorch distributed data parallel models using RoCE
GPUDirect and ZeroNIC.

System ResNet50 ResNet101 ResNet152

MLX RoCE 3.52±0.04 6.12±0.07 8.80±0.04

ZeroNIC 3.57±0.02 6.22±0.08 8.83±0.08

forwards the entire packet directly to the unmodified Linux
network stack (no zero-copy).

Figure 10 shows the throughput achieved by NCCL as
we vary the collective size. For small sizes, ZeroNIC and
the baseline deliver the same throughput. The throughput
bottleneck for small collectives is actually NCCL itself. It
implements a higher-level protocol with significant processing
overheads that cannot saturate the link with a single flow for
small collectives, regardless of whether RDMA or TCP is
used. As the collective size increases, the bottleneck becomes
packet processing in the TCP stack. For the baseline TCP
(no zero-copy), NCCL saturates at ~16Gbps for flows beyond
16MB. For large collective sizes, ZeroNIC manages to hit the
maximum throughput allowed by our FPGA prototype, 2.66×
higher than the baseline. If the FPGA limitation is removed,
ZeroNIC will saturate the Ethernet link. These results show
that the ZeroNIC data path is especially powerful for devices
such as GPUs. It eliminates two data copies: a copy from the
kernel buffer to the application buffer and a copy from the
CPU-based application buffer to a GPU buffer.

PyTorch. PyTorch [78] is the most popular AI framework.
For distributed training, PyTorch implements various par-
allelization strategies, leveraging communication backends
such as NCCL. For example, in data parallelism, training data
is partitioned while each node holds a full copy of the model.
During each iteration’s backward pass, all model gradients
are averaged across all ranks using the all-reduce collective.

We trained different sizes of ResNet [42] using PyTorch’s
distributed data parallelism [81] with NCCL. We compared
the average training epoch latency on two ZeroNIC nodes
using TCP, against two Mellanox nodes using RoCE with
GPUDirect [22]. Our baselines, ResNet50, ResNet101, and
ResNet152 are composed of 25.6, 45.5, and 60.2 million pa-
rameters, and require synchronizing 51.2, 91.0, and 120.4
MBs worth of gradients in every iteration, respectively. Each
epoch is composed of 100 iterations. Table 4 shows that
ZeroNIC achieves GPUDirect-level performance, within 2%
of RoCE’s latency.

As NCCL supports the IB verbs API, we ran both the
PyTorch and NCCL experiments on ZeroNIC without any
application/library modifications. These results demonstrate
that our design can be effortlessly used in AI clusters that rely
on high performance, while maintaining the flexibility and
robustness of the Linux network stack.
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Figure 11: Redis throughput across different payload sizes.

Redis. Redis [83] is an in-memory key-value database
widely used for in-memory caching. Redis’ performance is
crucial for a wide range of data-intensive web-scale applica-
tions. We used Redis with the libibverbs API, and we eval-
uated its throughput on ZeroNIC against Mellanox RoCE
(MLX RoCE) and kernel TCP using the Mellanox NIC (MLX
TCP). We ran the redis-benchmark [84] using the SET opera-
tion and varied the payload size from 1KB to 1MB. We used
a total of 4 clients with 10 outstanding requests per client in
order to saturate the Redis server thread.

Figure 11 illustrates that ZeroNIC achieves end-to-end
performance on par with RoCE, averaging 89% of RoCE’s
throughput across all the payload sizes. Compared to Mel-
lanox TCP, ZeroNIC achieved a 3.71× higher throughput on
average, benefiting from the lower CPU overheads. For in-
stance, for the 16KB message size, 71% of CPU cycles are
consumed by networking stack overhead for Mellanox TCP.
In contrast, both ZeroNIC and Mellanox with RoCE allow for
nearly 99% of the cycles to be dedicated to application-level
processing.

5.3 ZeroNIC Robustness Evaluation

While ZeroNIC achieves high throughput, it also gains the
robustness offered by transport protocols such as TCP. To
demonstrate the benefits of a flexible control path, we evaluate
ZeroNIC under various network perturbations and conditions.
ZeroNIC supports interleaved packets across multiple
zero-copy and non-zero-copy flows. To evaluate ZeroNIC’s
ability to handle and scale to multiple flows, we performed
an incast experiment combining 2MB zero-copy flows, and
64KB bidirectional short flows that used the unmodified non-
zero-copy socket API. The receiver ZeroNIC server used a
single core (two hyperthreads) to perform application and
network processing for all zero-copy flows.

Figure 12 shows (a) the throughput and CPU utilization
for the long flows and (b) the p50 latency for the short flows.
ZeroNIC is able to steer interleaved incoming packets to their
correct NIC queues, avoiding flow collision. It maintains fair-
ness across all flows, evenly distributing bandwidth of up to 8

zero-copy flows, the FPGA’s hardware limit. Meanwhile, total
CPU utilization (protocol processing, driver, provider, and ap-
plication) remains approximately constant, and the aggregate
throughput across flows saturates the available bandwidth.
Overall, ZeroNIC achieves high throughput with roughly con-
stant CPU resource demands as the flow count scales. This
result, together with our moderate hardware memory require-
ments to support thousands of high-performance flows (§3.2),
validates our design’s scalability. Additionally, regardless of
the number of high-performance flows, ZeroNIC can still con-
currently support non-zero-copy flows. Figure 12b shows that
their latency is not affected by the number of long flows.
ZeroNIC extends the drop-resistance of TCP to GPU-
direct data paths. A primary motivation for physically sep-
arating the control and data paths is to combine zero-copy
performance with a mature network transport. This experi-
ment examines packet losses, which is a significant problem
for RDMA solutions, like RoCE, that were designed assuming
a lossless fabric (§2.1). We injected packet drops by adding
probabilistic filtering rules at the RX side for both ZeroNIC
and the Mellanox TCP baseline with TX zero-copy. We could
not replicate this experiment for RoCE because none of our
available drop rules [35,66,92] could intercept RDMA traffic.

Figure 13 shows the throughput of a single GPU-to-GPU
flow as we raised the probabilistic drop rate from 0.1% to
10% for the two systems. As expected, both TCP-based sys-
tems perform well at low drop rates. ZeroNIC maintains
near-full throughput even at 1% drops, taking advantage of
TCP’s mechanisms for drop resistance (retransmitting mini-
mal data). RoCE is known to collapse to near-zero through-
put at 1% drops due to the use of go-back-N for retransmis-
sions [69, 103].

Adding drop resistance to GPU-to-GPU traffic is partic-
ularly important for AI clusters. It removes the pressure to
design a perfect congestion control mechanism and to over-
size switch buffers. It also allows switch chips to be config-
ured to use cut-though switching instead of store-and-forward
switching. The latter is forced by the need for forward-error-
correction (FEC) in order to reduce noise-induced packet
losses to zero.

6 Discussion

Zero-copy is critical but is not a panacea. We demonstrated
that a data path with both receive and send-side zero-copy
improves host networking even with mature network proto-
cols. However, as network links scale to 800Gbps and be-
yond for workloads like artificial intelligence, the control path
will become the next bottleneck. Recent proposals to reduce
packet processing overheads include hardware offload [40,60],
system call mitigation [18, 31], extending segmentation of-
fload [16, 29, 52], and cache-aligned reorganization [61]. To
improve metadata I/O between the NIC and software, systems
like Enso [86] and PacketMill [30] introduce optimizations



0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
# short non-ZC flows

0

25

50

75

100

Lo
ng

 F
lo

ws
To

ta
l C

PU
 U

til
iza

tio
n 

(%
)

1 2 4 8
# long ZC flows

0

25

50

75

100

Lo
ng

 F
lo

ws
Th

ro
ug

hp
ut

 (G
bp

s)

Throughput CPU

(a) Long flow (zero-copy) throughput and CPU utilization under collision with short flows.

1 2 4 8
# short non-ZC flows

100

150

200

Sh
or

t F
lo

ws
p5

0 
la

te
nc

y 
(u

s) 1 long ZC flows
2 long ZC flows
4 long ZC flows
8 long ZC flows

(b) Short flow (non-zero-copy) p50 latency.

Figure 12: Robustness experiment with long (zero-copy) and short (non-zero-copy) CPU-to-CPU flows colliding in ZeroNIC.

0.1 1.0 2.0 4.0 10.0
Drop Rate (%)

0
10
20
30
40
50

Th
ro

ug
hp

ut
 (G

bp
s)

MLX TCP
ZeroNIC (GPU)

Figure 13: Throughput under instrumented drops in ZeroNIC
(GPU-to-GPU) and Mellanox TCP (CPU-to-CPU).

for the efficient use of PCIe bandwidth. Our design is well-
positioned to help with and benefit from this evolution.
Our design enables an agile evolution of the data and
control path. Our design creates a triangle between the NIC,
data path devices, and control path devices with well-defined
interfaces and responsibilities. This allows the fast and largely
independent evolution and optimization of control and data
path devices. For example, a host architect can quickly swap
GPUs for other AI accelerators without re-implementing or
re-optimizing the network data path or the control path.

Control path flexibility is equally important. Achieving the
right balance of features and resources integrated in the NIC
is difficult. Unlike RNICs that jointly implement the control
and data paths in inflexible hardware or opaque firmware, our
NIC design implements only a necessary subset of features
to support remotely executed control paths. Via our design,
a system architect may use a different network protocol in
order to improve fabric performance (high utilization, reduced
drops, reduced hot spots, etc.) or use a specialized hardware
component for faster header processing (CPU with special-
ized cores, FPGAs, or specialized accelerator). Our design
facilitates changes in the control path of the triangle with-
out necessitating changes in the performant data path or the
application layer.

The bounds of the maximum bandwidth and minimum la-
tency of communication between the elements of the triangle
are set by the link specifications that connect them. Our pro-
totype uses PCIe links and inherits PCIe’s bandwidth and

latency profiles. As higher throughput and/or lower latency
links, such as CXL and NVLink, gain acceptance in industry,
our design will benefit from their characteristics.

7 Conclusion

Current end-host network stacks inherently couple the control
and data path, resulting in implicit trade-offs between the flex-
ibility and performance of network solutions. In this paper, we
showed that a physical separation of the data and control paths
allows host network stacks to achieve both flexibility and per-
formance. To this end, we presented a co-designed hardware
and software stack, which enables a zero-copy receive and
send data path between the NIC and any device memory, con-
trolled by any arbitrary transport protocol. We showcased
ZeroNIC, a prototype that combines an FPGA-based NIC and
the TCP stack in the Linux kernel as the transport protocol.
Our prototype saturates available network bandwidth on CPU
and GPU benchmarks. It improves TCP-based NCCL and Re-
dis throughput by 2.66× and 3.71×, respectively, over Linux
TCP on a Mellanox ConnectX-6, all while maintaining the
robustness of the TCP transport.
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