
Qizhe Cai

CS6501-003: Datacenter Infrastructure
- How to profile your systems

1

The importance of profiling systems

• Examples of research closely related to profiling

• Profiling tools that we can use today:

• htop — interactive system view

• Quick look at hot processes/threads, CPU and memory pressure, load distribution

• lstopo — hardware/NUMA topology

• See sockets, cores, caches, and NUMA distances; map threads to cores

• perf — CPU sampling and stats

• Hot functions, call stacks, cycles, cache misses; good for flamegraphs

• eBPF —low-overhead kernel tracing

• Trace syscalls, TCP events, scheduler latencies; per-flow attribution

2

Example 1: Fastsocket (ASPLOS 16)

3

Web Server Throughput with Linux 2.6.32

| The throughput decreases after #CPU cores >= 12

• The figure shows HTTP connection per second (throughput) with increasing number of CPU cores

Number of CPU cores

HT
TP

 c
on

ne
cti

on
s p

er
 se

co
nd

Example 1: Fastsocket: A network socket (ASPLOS 16)

4

CPU Profiling

• Almost 80% CPU time is spent on locking!

| Multiple cores are accessing global objects and critical sections!
|

Example 2: i10 (NSDI’20)

5

• CPU profiling seems messy

Block layer

VFS

App

Remote
Storage layer

TCP/IP Stack

SSD

Network

Linux CPU overheads

Example 2: i10: remote storage stack (NSDI’20)

6

Block layer

VFS

App

Remote
Storage layer

TCP/IP Stack

SSD

Network

• We attribute each functions into different categories/component.

Example 2: i10 (NSDI’20)

7

Block layer

VFS

App

Remote
Storage layer

TCP/IP Stack

SSD

Network

• CPU bottleneck is mainly on Net TX for NVMe-TCP.

• I10 resolves this bottleneck and so more CPU cycles can be spent on block layer

Example 3: Understanding host network stack overheads (SIGCOMM’21)

8

Visualization

Classificationperf data Symbol mapping*

Example 3: Understanding host network stack overheads (SIGCOMM’21)

9

• Understand the overheads of network stacks and how different optimizations resolve bottlenecks

• We’ll read this paper later this semester

htop

10

• Get CPU usages of your servers

htop

11

• Get CPU usages of your servers

• Get memory usages of the servers

htop

12

• Get CPU usages of your servers

• Get memory usages of the servers

• See per-application resource usages

lstopo

13

• Check server’s hardware topologies/configuration

lstopo

14

• Check server’s hardware topologies/configurations

• Hyper-threading: Logical core #0 and core #20 share the same physical core #0.

lstopo

15

• Check server’s hardware topologies/configurations

• Hyper-threading: Logical core #0 and core #20 share the same physical core #0

• Two CPU sockets/NUMA memories

lstopo

16

• Check server’s hardware topologies/configurations

• Hyper-threading: Logical core #0 and core #20 share the same physical core #0

• Two CPU sockets/NUMA memories

CPU caches

lstopo

17

• Check server’s hardware topologies/configurations

• Hyper-threading: Logical core #0 and core #20 share the same physical core #0

• Two CPU sockets/NUMA memories

NICs

lstopo

18

• Check server’s hardware topologies/configurations

• Hyper-threading: Logical core #0 and core #20 share the same physical core #0

• Two CPU sockets/NUMA memories

Storage devices

Perf

19

• sudo perf top

• Get per-function CPU costs (excluding child function CPU costs)

Perf with flamegraph

20

• Understand the data paths

Perf with flamegraph

21

• The Flamegraph allows users to view calling traces and function usage

• https://github.com/brendangregg/FlameGraph

Perf with flamegraph

22

• copy_user_enhanced_fast_string: server -> syscall -> vfs -> tcp layer.

• Copying the data from kernel to OS on the receiver side

Perf with flamegraph

23

• Interrupts are triggered within the copy function.

• Network packets are arrived at the receiver side.

Perf sched

24

perf sched record -- sleep 1

• Getting runtime of each app

• Getting number of context switches

• Getting delay of apps

• The CPU core is busy running other tasks, causing the task to wait.

eBPF

25

• Berkeley Packet Filter (BPF)
• BPF lets user-space programs attach filters to sockets, controlling which data passes through.
• Without requiring device changes or kernel recompilation.
• User programs (e.g., C) are compiled into BPF bytecode, which runs in the kernel

• Extended BPF (eBPF)
• People have extended BPF to use this useful tool in many places.
• Linux kernel has now many “hook” points and runs an eBPF program whenever reaching the point

• Technically, these hook points can be placed anywhere in the kernel.
• Two common tools:

• BCC: complex tools and daemons
• Bpftrace: command-line tools

https://github.com/bpftrace/bpftrace/blob/master/INSTALL.md

Example

26

• sudo bpftrace -e 'kprobe:tcp_recvmsg { printf("pid=%d comm=%s len=%d\n", pid, comm,
arg2);print(kstack); }'

• Get the call stack of tcp_recvmsg

https://github.com/bpftrace/bpftrace/blob/master/INSTALL.md

Questions?

