Qizhe Cai

CS/ECE 4457

Computer Networks:
Architecture and Protocols

Lecture 4/5
- Three Architectural Principles
- Design Goals

YIRGINIA

Goals for Today’s and next Lecture

e Recap: Three architectural principles:
e Layering
e End-to-end principle
« Fate Sharing principle

« Design goals for computer networks:
e Eight of them

Quick recap from last lecture

Three Architectural Principles

Network Modularity Decisions

« How to break system into modules?
« Classic decomposition into tasks

« Where are modules implemented?
e Hosts?
e Routers?
e Both?

« Where is state stored?
e Hosts?
e Routers?
e Both?

Leads to three design principles

« How to break system into modules
e Layering

« Where are modules implemented
e End-to-End Principle

e Where is state stored?
e Fate-Sharing

Layering

Breakdown end-to-end functionality into tasks

e Bits on wire

e Packets on wire

« Deliver packets between hosts in a “local” network (eg, within UVA)

e Routing & forwarding packets across networks (eg, from UVA to UIUC)
 Deliver data reliably between processes (applications)

e Do something with the data

Breakdown end-to-end functionality into tasks

« Bits on wire

« Packets on wire

e Deliver packets between hosts in a local network
e Routing and forwarding (packets) across networks
« Deliver data reliably between processes

e Do something with the data

Resulting Modules (Layers)

« Bits on wire (Physical)

e Packets on wire

« Deliver packets between hosts in a local network (Datalink)

e Routing and forwarding (packets) across networks (Network)
« Deliver data reliably between processes (Transport)

« Do something with the data (Application)

Resulting Modules (Layers)

« Bits on wire (Physical, Layerl)

e Packets on wire

« Deliver packets to hosts across local network (Datalink, Layer2)

« Routing and forwarding (packets) across networks (Network, Layer3)
« Deliver data reliably between processes (Transport, Layer4)

« Do something with the data (Application)

Five Layers (Top - Down)

e Application: Providing network support for apps

e Transport (L4): (Reliable) end-to-end delivery

e Network (L3): Routing and forwarding across networks
« Datalink (L2): Forwarding within a local network

« Physical (L1): Bits on wire

Layering

—_— Built on top of

Application
reliable delivery

best-effort routing . ¢
—p Built on top of best-

TE—
effort forwarding
physical bit transfer
~——— Physical

« A kind of modularity

e Functionality separated into layers
e Layer n interfaces with only layer n-1 and layer n+1
« Hides complexity of surrounding layers

An end-to-end view of the layers

« Application: Providing network support for apps

e Transport (L4): (Reliable) end-to-end delivery

e Network (L3): Routing and forwarding across networks
« Datalink (L2): Forwarding within a local network

« Physical (L1): Bits on wire

Application Application

Transport Transport

Physical Physical Physical

Data Link

Physical

Why does the packet go all the way to network layer at each hop?

Questions?

Three Internet Design Principles

« How to break system into modules?
e Layering

« Where are modules implemented?
e End-to-End Principle

e Where is state stored?
e Fate-Sharing

End-to-end Principle

If a function can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the
communication system,

then providing that function as a feature of the communication system
itself is not possible.

Sometimes providing an incomplete version of that function as a feature
of the communication system itself may be useful as a performance
enhancement.

End-to-end Principle: an example

Application Application

Transport Transport

Network m Network
Data Link Data Link Data Link

Physical Physical Physical Physical

« Suppose each link layer transmission is reliable
e Does that ensure end-to-end (application-to-application) reliability?

e Suppose network layer is reliable
e Does that ensure end-to-end (application-to-application) reliability?

End-to-end Principle: lets read again

If a function can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the
communication system,

then providing that function as a feature of the communication system
itself is not possible.

Sometimes providing an incomplete version of that function as a feature
of the communication system itself may be useful as a performance
enhancement.

End-to-end Principle (Interpretation)

Assume the condition (IF) holds. Then,

e End-to-end implementation
e Correct

* Generalized, and simplifies lower layers

e In-network implementation
 Insufficient

« May help — or hurt — performance

Questions?

Three Internet Design Principles

« How to break system into modules?
e Layering

« Where are modules implemented?
e End-to-End Principle

e Where is the state stored?
e Fate-sharing

General Principle: Fate-Sharing

When storing state in a distributed system, colocate it with entities that
rely on that state
« e.g, Connection states vs. Transport layers

Only way failure can cause loss of the critical state is if the entity that
cares about it also fails ...
e ... in which case it doesn’t matter

Often argues for keeping network state at end hosts rather than inside
routers
e E.g., packet switching rather than circuit switching

Questions?

Decisions and their Principles

« How to break system into modules
 Dictated by layering

« Where modules are implemented
« Dictated by End-to-End Principle

e Where state is stored
e Dictated by Fate Sharing

From Architecture to Design:

Design Goals

David Clark

« Wrote a paper in 1988 that tried to capture why the Internet turned out
as it did (Layer 3)

o It described an ordered list of priorities that informed the decision

« What do you think those priorities were?

Internet Design Goals (Clark ’88)

« Connect existing networks

e Robust in face of failures

e Support multiple types of delivery services
« Accommodate a variety of networks

o Allow distributed management

e Easy host attachment

« Cost effective

« Allow resource accountability

#1: Connect Existing Networks

Want one protocol that could be used to connect any pair of (existing)
networks

 Different networks may have different needs
e For some: reliable delivery more important
e For others: performance more important
« But there is one need that every network has: connectivity

e The Internet Protocol (IP) is that unifying protocol
o All (existing) networks must be able to implement it

#2: Robust in Face of Failures

As long as network is not partitioned, two hosts should be able to
communicate (eventually)

e Must eventually recover from failures

« Very successful in the past; unclear how relevant now

« Availability is becoming increasingly important than recovery

#3: Support Multiple Types of Delivery Services

Different delivery services (applications) should be able to co-exist
e Already implies an application-neutral framework

e Build lowest common denominator service
e Again: connectivity
e For Reliability,
« Applications that need reliability may use it
« Applications that do not need reliability can ignore it

« This isn’t as obvious as it seems...
« What would applications in 2050 need?

Questions?

#4: Variety of Networks

Must be able to support different networks with different hardware

e Incredibly successful!
« Minimal requirements on networks
« No need for reliability, in-order, fixed size packets, etc.
e A result of aiming for lowest common denominator

e Again: Focus on connectivity
« Let networks do specific implementations for other functionalities
« Automatically adapt: WiFi, LTE, 3G, 4G, 5G

#5: Decentralized Management

No need to have a single “vantage” point to manage networks

e Both a curse and a blessing
e Important for easy deployment
« Makes management hard today

e Recent efforts have improved management of individual networks
e But no attempt to manage the Internet as a whole...
« What might make this complex?

#6: Easy Host Attachment

The mechanism that allows hosts to attach to networks must be made as
easy as possible, but no easier

e Clark observes that cost of host attachment may be higher because hosts
had to be smart

« But the administrative cost of adding hosts is very low, which is probably
more important

e Plug-and-play kind of behavior...

e And now most hosts are smart for other reasons
e So the cost is actually minimal...

#7: Cost Effective

Make networks as cheap as possible, but no cheaper
e Cheaper than circuit switching at low end
« More expensive than circuit switching at high end

« Not a bad compromise:
o Cheap where it counts (low-end)
« More expensive for those who can pay...

#8: Resource Accountability

Each network element must be made accountable for its resource usage

e Failure!

Internet Motto

“We reject kings, presidents and voting. We believe in rough
consensus and running code.”
- - David Clark

Real Goals

e Build something that works

e Connect existing networks

e Robust in face of failures

« Support multiple types of delivery service
« Accommodate a variety of networks

e Allow distributed management

e Easy host attachment

« Cost effective

« Allow resource accountability

Questions to think about

« What goals are missing from this list?
e Suggestions?

« What would the resulting design look like?

Some of the missing issues

e Performance

e Security
« Resilience to attacks (denial-of-service)
e Endpoint security
« Tracking down misbehaving users

e Privacy
 Availability

« Resource sharing (fairness, etc.)

e ISP-level concerns
e Economic issues of interconnection

Questions?

Next lecture

« Beginning of “Design of computer networks”

 Start with Layer 1 and Layer 2

« Physical bits (very little)

e Local best-effort forwarding
 Lots of interesting aspects

« Lots of group activities

