
Computer Networks:
Architecture and Protocols

CS/ECE 4457

Lecture 4/5
- Three Architectural Principles

- Design Goals

Qizhe Cai

Goals for Today’s and next Lecture

• Recap: Three architectural principles:
• Layering
• End-to-end principle
• Fate Sharing principle

• Design goals for computer networks:
• Eight of them

Quick recap from last lecture

Three Architectural Principles

• How to break system into modules?
• Classic decomposition into tasks

• Where are modules implemented?
• Hosts?
• Routers?
• Both?

• Where is state stored?
• Hosts?
• Routers?
• Both?

Network Modularity Decisions

• How to break system into modules
• Layering

• Where are modules implemented
• End-to-End Principle

• Where is state stored?
• Fate-Sharing

Leads to three design principles

Layering

• Bits on wire

• Packets on wire

• Deliver packets between hosts in a “local” network (eg, within UVA)

• Routing & forwarding packets across networks (eg, from UVA to UIUC)

• Deliver data reliably between processes (applications)

• Do something with the data

Breakdown end-to-end functionality into tasks

• Bits on wire

• Packets on wire

• Deliver packets between hosts in a local network

• Routing and forwarding (packets) across networks

• Deliver data reliably between processes

• Do something with the data

Breakdown end-to-end functionality into tasks

• Bits on wire (Physical)

• Packets on wire

• Deliver packets between hosts in a local network (Datalink)

• Routing and forwarding (packets) across networks (Network)

• Deliver data reliably between processes (Transport)

• Do something with the data (Application)

Resulting Modules (Layers)

• Bits on wire (Physical, Layer1)

• Packets on wire

• Deliver packets to hosts across local network (Datalink, Layer2)

• Routing and forwarding (packets) across networks (Network, Layer3)

• Deliver data reliably between processes (Transport, Layer4)

• Do something with the data (Application)

Resulting Modules (Layers)

• Application: Providing network support for apps

• Transport (L4): (Reliable) end-to-end delivery

• Network (L3): Routing and forwarding across networks

• Datalink (L2): Forwarding within a local network

• Physical (L1): Bits on wire

Five Layers (Top - Down)

• A kind of modularity
• Functionality separated into layers
• Layer n interfaces with only layer n-1 and layer n+1

• Hides complexity of surrounding layers

Layering

Built on top of
reliable delivery

Built on top of best-
effort forwarding

Built on top of
best-effort routing

Built on top of
physical bit transfer

An end-to-end view of the layers

• Application: Providing network support for apps
• Transport (L4): (Reliable) end-to-end delivery
• Network (L3): Routing and forwarding across networks
• Datalink (L2): Forwarding within a local network
• Physical (L1): Bits on wire

Why does the packet go all the way to network layer at each hop?

Questions?

• How to break system into modules?
• Layering

• Where are modules implemented?
• End-to-End Principle

• Where is state stored?
• Fate-Sharing

Three Internet Design Principles

If a function can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the
communication system,

then providing that function as a feature of the communication system
itself is not possible.

Sometimes providing an incomplete version of that function as a feature
of the communication system itself may be useful as a performance
enhancement.

End-to-end Principle

End-to-end Principle: an example

• Suppose each link layer transmission is reliable
• Does that ensure end-to-end (application-to-application) reliability?

• Suppose network layer is reliable
• Does that ensure end-to-end (application-to-application) reliability?

If a function can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the
communication system,

then providing that function as a feature of the communication system
itself is not possible.

Sometimes providing an incomplete version of that function as a feature
of the communication system itself may be useful as a performance
enhancement.

End-to-end Principle: lets read again

Assume the condition (IF) holds. Then,

• End-to-end implementation
• Correct
• Generalized, and simplifies lower layers

• In-network implementation
• Insufficient
• May help — or hurt — performance

End-to-end Principle (Interpretation)

Questions?

• How to break system into modules?
• Layering

• Where are modules implemented?
• End-to-End Principle

• Where is the state stored?
• Fate-sharing

Three Internet Design Principles

• When storing state in a distributed system, colocate it with entities that
rely on that state
• e.g, Connection states vs. Transport layers

• Only way failure can cause loss of the critical state is if the entity that
cares about it also fails …
• … in which case it doesn’t matter

• Often argues for keeping network state at end hosts rather than inside
routers
• E.g., packet switching rather than circuit switching

General Principle: Fate-Sharing

Questions?

• How to break system into modules
• Dictated by layering

• Where modules are implemented
• Dictated by End-to-End Principle

• Where state is stored
• Dictated by Fate Sharing

Decisions and their Principles

From Architecture to Design:

Design Goals

• Wrote a paper in 1988 that tried to capture why the Internet turned out
as it did (Layer 3)

• It described an ordered list of priorities that informed the decision

• What do you think those priorities were?

David Clark

• Connect existing networks

• Robust in face of failures

• Support multiple types of delivery services

• Accommodate a variety of networks

• Allow distributed management

• Easy host attachment

• Cost effective

• Allow resource accountability

Internet Design Goals (Clark ’88)

Want one protocol that could be used to connect any pair of (existing)
networks

• Different networks may have different needs
• For some: reliable delivery more important
• For others: performance more important
• But there is one need that every network has: connectivity

• The Internet Protocol (IP) is that unifying protocol
• All (existing) networks must be able to implement it

#1: Connect Existing Networks

As long as network is not partitioned, two hosts should be able to
communicate (eventually)

• Must eventually recover from failures

• Very successful in the past; unclear how relevant now
• Availability is becoming increasingly important than recovery

#2: Robust in Face of Failures

Different delivery services (applications) should be able to co-exist

• Already implies an application-neutral framework

• Build lowest common denominator service
• Again: connectivity
• For Reliability,
• Applications that need reliability may use it
• Applications that do not need reliability can ignore it

• This isn’t as obvious as it seems…
• What would applications in 2050 need?

#3: Support Multiple Types of Delivery Services

Questions?

Must be able to support different networks with different hardware

• Incredibly successful!
• Minimal requirements on networks
• No need for reliability, in-order, fixed size packets, etc.
• A result of aiming for lowest common denominator

• Again: Focus on connectivity
• Let networks do specific implementations for other functionalities
• Automatically adapt: WiFi, LTE, 3G, 4G, 5G ….

#4: Variety of Networks

No need to have a single “vantage” point to manage networks

• Both a curse and a blessing
• Important for easy deployment
• Makes management hard today

• Recent efforts have improved management of individual networks
• But no attempt to manage the Internet as a whole…
• What might make this complex?

#5: Decentralized Management

The mechanism that allows hosts to attach to networks must be made as
easy as possible, but no easier

• Clark observes that cost of host attachment may be higher because hosts
had to be smart

• But the administrative cost of adding hosts is very low, which is probably
more important

• Plug-and-play kind of behavior…

• And now most hosts are smart for other reasons
• So the cost is actually minimal…

#6: Easy Host Attachment

Make networks as cheap as possible, but no cheaper

• Cheaper than circuit switching at low end

• More expensive than circuit switching at high end

• Not a bad compromise:
• Cheap where it counts (low-end)
• More expensive for those who can pay…

#7: Cost Effective

Each network element must be made accountable for its resource usage

• Failure!

#8: Resource Accountability

“We reject kings, presidents and voting. We believe in rough
consensus and running code.”

- - David Clark

Internet Motto

• Build something that works

• Connect existing networks

• Robust in face of failures

• Support multiple types of delivery service

• Accommodate a variety of networks

• Allow distributed management

• Easy host attachment

• Cost effective

• Allow resource accountability

Real Goals

• What goals are missing from this list?
• Suggestions?

• What would the resulting design look like?

Questions to think about

• Performance

• Security
• Resilience to attacks (denial-of-service)
• Endpoint security
• Tracking down misbehaving users

• Privacy

• Availability

• Resource sharing (fairness, etc.)

• ISP-level concerns
• Economic issues of interconnection

Some of the missing issues

Questions?

• Beginning of “Design of computer networks”

• Start with Layer 1 and Layer 2
• Physical bits (very little)
• Local best-effort forwarding
• Lots of interesting aspects
• Lots of group activities
• …

Next lecture

