Qizhe Cai

CS/ECE 4457

Computer Networks:
Architecture and Protocols

Lecture 4/5
- Three Architectural Principles
- Design Goals

YIRGINIA

Announcements

« Exam conflict:
e Today is the last day to announce your exam conflicts.
« Exam 1: 02/10
e« Exam 2:03/12
« Exam 3:04/28
« Thank you to those who already sent us an email
« We will send an email to all those who have a conflict

e Problem set 1 solutions released (on Piazza)

e Problem set 2 will be released soon (on course website)

Context for Today’s Lecture

« So far, we have discussed several high-level concepts
« Network sharing
e End-to-end working of the Internet
« Addressing, Routing, Switch/Router functionality, etc.

« And, have dived deep into several topics:
 Circuit switching and packet switching (especially the “why”)
« Delays (transmission, propagation)

« You know more about computer networks than you may realize!

« Today: Continue to lay the foundation for rest of the course

Goals for Today’s and next Lecture

e Three architectural principles:
e Layering
e End-to-end principle
« Fate Sharing principle

« Design goals for computer networks:
e Eight of them

« We will come back to these over and over again
« Almost every lecture in the semester

« Before we start, let me outrightly admit
e First time | learnt these, | said — what the @#5$%
o ... there are easier ways to torture students!
 Now, these have become the guiding principles of my career!

Quick recap from last lecture

Recap: four fundamental problems!

« Locating the destination: Naming, addressing
« Mapping of names to addresses using Domain Name System

e Finding a path to the destination: Routing
 Distributed algorithm that computes and stores routing tables

« Sending data to the destination: Forwarding
« Input queues, virtual output queues, output queues
e Enablers: Packet header (address), and routing table (outgoing link)

« Reliability: Failure handling
« Not much discussion, but the question: hosts or networks?

Recap: the final piece in the story — Host network stack

Of Sockets and Ports

« When a process wants access to the network, it opens a socket, which is
associated with a port

e Socket: an OS mechanism that connects processes to the network stack
e Port: number that identifies that particular socket

e The port number is used by the OS to direct incoming packets

Recap: Implications for Packet Header

» Packet Header must include:
« Source and destination address (used by network)
e Source and destination port (used by network stack)

« When a packet arrives at the destination host, packet is delivered to the
socket associated with the destination port

e More details later

Recap: the end-to-end story

« Application opens a socket that allows it to connect to the network stack
« Maps name of the web site to its address using DNS

« The network stack at the source embeds the address and port for both
the source and the destination in packet header

e Each router constructs a routing table using a distributed algorithm

e Each router uses destination address in the packet header to look up the
outgoing link in the routing table
« And when the link is free, forwards the packet

« When a packet arrives the destination:

« The network stack at the destination uses the port to forward the
packet to the right application

Recap: Separation of concerns

« Network fabric: Deliver packets from stack to stack (based on address)
e Network stack (OS): Deliver packets to appropriate socket (based on port)

« Applications:
e Send and receive packets
e Understand content of packet bodies

Questions?

Who cares?

« Why is separation of concerns important?
« Separation of concerns ~ Modularity

 If each component’s task well-defined, one can focus design on that task
« And replace it with any other implementation that does that task
« Without changing anything else

What is Modularity

« Modularity is nothing more than decomposing programs/systems into
smaller units.
e A clean “separation of concerns”

« Plays a crucial role in computer science...

e ... and networking

Computer System Modularity

 Partition system into modules
« Each module has well defined interface

 Interfaces give flexibility in implementation
« Changes have limited scope

« Examples
 Libraries encapsulating set of functionalities

e The trick is to find the right modularity
e The interfaces should be long-lasting
e If interfaces are changing often, modularity is wrong

Network System Modularity

« The need for modularity still applies
e And is even more important! (why?)

« Network implementations not just distributed across many lines of code
« Normal modularity “organizes” that code

« Networking is distributed across many machines
e Hosts

e Routers

“Thinking” Network System Modularity

« Applications deal with data

e End-host network stacks move data from applications to the fabric
« Network fabric delivers data between network stacks

« Network (stack + fabric) delivers data between applications

« What is the interface between applications and network stacks?
e Sockets

e What is the interface between network stacks and network fabric?
o Packet headers

e The right way to think about sockets and packets

Three Architectural Principles

Network Modularity Decisions

« How to break system into modules?
« Classic decomposition into tasks

« Where are modules implemented?
e Hosts?
e Routers?
e Both?

« Where is state stored?
e Hosts?
e Routers?
e Both?

Leads to three design principles

« How to break system into modules
e Layering

« Where are modules implemented
e End-to-End Principle

e Where is state stored?
e Fate-Sharing

Layering

Breakdown end-to-end functionality into tasks

e Bits on wire

e Packets on wire

« Deliver packets between hosts in a “local” network (eg, within UVA)

e Routing & forwarding packets across networks (eg, from UVA to UIUC)
 Deliver data reliably between processes (applications)

e Do something with the data

Breakdown end-to-end functionality into tasks

« Bits on wire

« Packets on wire

e Deliver packets between hosts in a local network
e Routing and forwarding (packets) across networks
« Deliver data reliably between processes

e Do something with the data

Resulting Modules (Layers)

« Bits on wire (Physical)

e Packets on wire

« Deliver packets between hosts in a local network (Datalink)

e Routing and forwarding (packets) across networks (Network)
« Deliver data reliably between processes (Transport)

« Do something with the data (Application)

Resulting Modules (Layers)

« Bits on wire (Physical, Layerl)

e Packets on wire

« Deliver packets to hosts across local network (Datalink, Layer2)

« Routing and forwarding (packets) across networks (Network, Layer3)
« Deliver data reliably between processes (Transport, Layer4)

« Do something with the data (Application)

Five Layers (Top - Down)

e Application: Providing network support for apps

e Transport (L4): (Reliable) end-to-end delivery

e Network (L3): Routing and forwarding across networks
« Datalink (L2): Forwarding within a local network

« Physical (L1): Bits on wire

Layering

—_— Built on top of

Application
reliable delivery

best-effort routing . ¢
—p Built on top of best-

TE—
effort forwarding
physical bit transfer
~——— Physical

« A kind of modularity

e Functionality separated into layers
e Layer n interfaces with only layer n-1 and layer n+1
« Hides complexity of surrounding layers

An end-to-end view of the layers

« Application: Providing network support for apps

e Transport (L4): (Reliable) end-to-end delivery

e Network (L3): Routing and forwarding across networks
« Datalink (L2): Forwarding within a local network

« Physical (L1): Bits on wire

Application Application

Transport Transport

Physical Physical Physical

Data Link

Physical

Why does the packet go all the way to network layer at each hop?

Questions?

Three Internet Design Principles

« How to break system into modules?
e Layering

« Where are modules implemented?
e End-to-End Principle

e Where is state stored?
e Fate-Sharing

Distributing Layers across Network

« Layers are simple if only on a single machine
o Just stack of modules interacting with those above/below

« But we need to implement layers across machines
e Hosts
e Routers/switches

« What gets implemented where? And why?

What gets implemented on Host?

e Bits arrive on wire, must make it up to application

e Therefore, all layers must exist at host!

What gets implemented on Router?

e Bits arrive on wire
e Physical layer necessary

o Packets must be forwarded to next router/switch
« Datalink layer necessary

e Routers participate in global delivery
« Network layer necessary

e Routers do not support reliable delivery

e Transport layer (and above) not supported
e« Why?

Visualizing what gets implemented where

e Lower three layers implemented everywhere

e Top two layers only implemented at hosts

Router/switch

Application) Application
Transport Transport

Network Network

Data Link

Physical Physical — Physical

\ End host

Physical

But why implemented this way?

« Layering tells you what services each layer should provide

« But doesn’t tell you which layer should be implemented on which nodes

End-to-end Principle

If a function can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the
communication system,

then providing that function as a feature of the communication system
itself is not possible.

Sometimes providing an incomplete version of that function as a feature
of the communication system itself may be useful as a performance
enhancement.

End-to-end Principle: an example

Application Application

Transport Transport

Network m Network
Data Link Data Link Data Link

Physical Physical Physical Physical

« Suppose each link layer transmission is reliable
e Does that ensure end-to-end (application-to-application) reliability?

e Suppose network layer is reliable
e Does that ensure end-to-end (application-to-application) reliability?

End-to-end Principle: lets read again

If a function can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the
communication system,

then providing that function as a feature of the communication system
itself is not possible.

Sometimes providing an incomplete version of that function as a feature
of the communication system itself may be useful as a performance
enhancement.

End-to-end Principle (Interpretation)

Assume the condition (IF) holds. Then,

e End-to-end implementation
e Correct

* Generalized, and simplifies lower layers

e In-network implementation
 Insufficient

« May help — or hurt — performance

End-to-end Principle (Interpretation)

Application

Application

Transport Transport

Network m Network Network
Data Link Data Link Data Link

Physical Physical — Physical

Physical

What does the end mean?

End-to-end Principle (Three things to know)
« Everyone knows what it is
e So, you must!

« Everyone believes it

e SO, you must!

 Nobody knows what it means

 We are all doomed anyways.

Questions?

Three Internet Design Principles

« How to break system into modules?
e Layering

« Where are modules implemented?
e End-to-End Principle

e Where is the state stored?
e Fate-sharing

General Principle: Fate-Sharing

When storing state in a distributed system, colocate it with entities that
rely on that state
« e.g, Connection states vs. Transport layers

Only way failure can cause loss of the critical state is if the entity that
cares about it also fails ...
e ... in which case it doesn’t matter

Often argues for keeping network state at end hosts rather than inside
routers
e E.g., packet switching rather than circuit switching

Questions?

Decisions and their Principles

« How to break system into modules
 Dictated by layering

« Where modules are implemented
« Dictated by End-to-End Principle

e Where state is stored
e Dictated by Fate Sharing

