
Computer Networks:
Architecture and Protocols

CS/ECE 4457

Lecture 3
- Packet Delays

- How the Internet works

Qizhe Cai

Context for and Goals of Today’s Lecture

• Today’s lecture is going to be one of the harder lectures
• If you understand everything

• There is something wrong!

• Goals:
• Wrap up discussion on transmission and propagation delays
• How does the Internet work?

• An end-to-end view

But, as usual, lets start with:

what we have learnt so far

A set of network elements connected together, that implement a set of
protocols for the purpose of sharing resources at the end hosts

Recap: What is a computer network?

Recap: network can be abstractly represented as a graph

PathSource

Destination

Source

Destination

Path

Recap: Sharing the network

PathSource

Destination

Source

Destination

Path

Recap: Performance metrics in computer networks!

• Bandwidth: Number of bits sent per second (bits per second, or bps)
• Depends on hardware …

• Delay: Time for all bits to go from source to destination (seconds)
• Depends on hardware, distance, traffic from other sources, …

• Many other performance metrics
• Reliability, fairness, etc.
• We will come back to other metrics later …

• First: Reservations
• Reserve (peak) bandwidth needed in advance

• One way to implement reservations: circuit switching
• Source sends a reservation request for peak demand to destination
• Switches/routers establish a “circuit”
• Source sends data
• Source sends a “teardown circuit” message

Recap: Two approaches to sharing networks

• Goods:
• Predictable performance
• Reliable delivery
• Simple forwarding mechanism

• Not-so-goods
• Handling failures
• Resource underutilization
• Blocked connections
• Connection set up overheads
• Per-connection state in switches (scalability problem)

Recap: Circuit switching (reservation-based sharing) summary

• Break data into smaller pieces
• Packets!

• Transmit the packets without any reservations
• And, hope for the best

Recap: Solution: Packet switching

• Goods:
• With proper mechanisms in place

• Easier to handle failures
• No resource underutilization

• A source can send more if others don’t use resources
• No blocked connection problem
• No per-connection state
• No set-up cost

• Not-so-goods:
• Unpredictable performance
• High latency
• Packet header overhead

Recap: Packet switching summary

Summary of network sharing

• Statistical multiplexing: combining demands to share resources efficiently

• Long history in computer science
• Processes on an OS (vs every process has own core)
• Cloud computing (vs every one has own datacenter)

• Based on the premise that:
• Peak of aggregate load is << aggregate of peak load

• Therefore, it is better to share resources than to strictly partition them …

Statistical multiplexing

Both embody statistical multiplexing

• Reservation: sharing at connection level
• Resources shared between connections currently in system
• Reserve the peak demand

• On-demand: sharing at packet level
• Resources shared between packets currently in system
• Resources given out on packet-by-packet basis
• No reservation of resources

Two approaches to sharing networks

Understanding delay/latency

• Consists of six components
• Link properties:

• Transmission delay
• Propagation delay

• OS internals:
• Processing delay
• Queueing delay

• Traffic matrix and switch internals:
• Processing delay
• Queueing delay

• First, consider transmission, propagation delays

• Queueing delay and processing delays later in the course

Packet delay/latency

• How long does it take to push all the bits of a packet into a link?

• = Packet size / Link bandwidth

• Example:
• Packet size = 1500Byte
• Bandwidth = 100Mbps
• 1500*8/100*1024*1024 seconds

• Independent of the link length (distance that the packet traverses)

Transmission delay

• How long does it take to move one bit from one end of a link to the other?

• = Link length / Propagation speed of link
• Propagation speed ~ some fraction of speed of light

• Example:
• Length = 30,000 meters
• Delay = 30*1000/3*100,000,000 second = 100us

• Independent of packet size and bandwidth

Propagation delay

Group Exercise:

How long does it take for a packet on a link?

Constraints:
• Packet size = 1000Byte
• Bandwidth = 100Mbps
• Length = 30,000m

Solution to Group Exercise:

How long does it take for a packet on a link?

~180us

Why?

Questions?

Today’s lecture: How does the Internet work?

1. Dive into end-to-end: from source to destination

2. First look into switches: routing, queueing, forwarding

3. First look into network stack: sockets, ports, “the stack”

How does the Internet work?

An end-to-end view

• Naming, addressing: Locating the destination

• Routing: Finding a path to the destination

• Forwarding: Sending data to the destination

• Reliability: Handling failures, packet drops, etc.

Four fundamental problems!

Naming, Routing, Forwarding, Reliability

• Each is motivated by a clear need

• The solutions are not always clean or deep

• But if you keep in mind what the problem is
• You’ll be able to understand the solutions
• When the right time comes :-)

Four fundamental problems!

Will take the entire course to learn these:

Lets get an end-to-end picture!

• Network Address: where host is located
• Requires an address for the destination host

• Host Name: which host it is
• why do we need a name?

• Answer: When you move a host to new building
• Address changes
• Name does not change

• Same thing with your own name and address!

• Remember the analogy: human names, addresses, post office, letters

Fundamental problem #1: Naming and Addressing

• Consider when you access a web page
• Insert URL into browser (eg, www.virginia.edu)
• Packets sent to web site (reliably)
• Packet reach application on destination host

• How do you get to the website?
• URL is user-level name (eg, www.virginia.edu)
• Network needs address (eg, where is www.virginia.edu)?

• Must map names to addresses
• Just like we use an address book to map human names to addresses

Names versus addresses

http://www.virginia.edu
http://www.virginia.edu
http://www.virginia.edu

• On the Internet, we only name hosts (sort of)
• URLs are based on the name of the host containing the content (that

is, www.virginia.edu names a host)

• Before you can send packets to www.virginia.edu, you must resolve names
into the host’s address

• Done by the Domain Name System (DNS)

Mapping Names to Addresses

The source knows the name;
Maps that name to an address using DNS!

http://www.virginia.edu
http://www.virginia.edu

Questions?

Routing packets through network elements (eg, routers) to destination

• Given destination address (and name), how does each switch/router
know where to send the packet so that the packet reaches its destination

• When a packet arrives at a router
• a routing table determines which outgoing link the packet is sent on
• Computed using routing protocols

Fundamental problem #2

• Distributed algorithm that runs between routers
• Distributed means no single router has “full” view of the network
• Exchange of messages to gather “enough” information …

• … about the network topology

• Compute paths through that topology

• Store forwarding information in each router
• If packet is destined for X, send out using link l1
• If packet is destined for Y, send out using link l2
• Can packets going to different destinations sent out to same link?

• We call this a routing table

Routing protocols (conceptually)

Questions?

Queueing and Forwarding of packets at switches/routers

Fundamental problem #3

Input queue

Virtual output queue

Output queue

Queueing and Forwarding of packets at switches/routers

• Queueing: When a packet arrives, store it in “input queues”
• Each incoming queue divided into multiple virtual output queues
• One virtual output queue per outgoing link
• When a packet arrives:

• Look up its destination’s address (how?)
• Find the link on which the packet will be forwarded (how?)
• Store the packet in corresponding virtual output queue

• Forwarding: When the outgoing link free
• Pick a packet from the corresponding virtual output queue
• forward the packet!

Fundamental problem #3

• Packets must describe where it should be sent
• Requires an address for the destination

• Packets must describe where its coming from
• For handling failures, etc.
• Requires an address for the source

• Packets must carry data
• can be bits in a file, image, whatever

What must packets carry to enable forwarding?

Header Data

• Processing delay
• Easy; each switch/router needs to decide where to put packet
• Requires checking header, etc.

• Queueing delay
• Harder; depends on “how many packets are in front of me”
• Depends on network load
• As load increases, queueing delay increases

• In an extreme case, increase in network load
• results in packet drops

• We will return to this in much more depth later …

Switch Processing and Queueing delay

Questions?

How do you deliver packets reliable?

• Packets can be dropped along the way
• Buffers in router can overflow
• Routers can crash while buffering packets
• Links can garble packets

• How do you make sure packets arrive safely on an unreliable network?
• Or, at least, know if they are delivered?
• Want no false positives, and high change of success

Fundamental problem #4

• Who is responsible for this? (architecture)
• Network?
• Host?

• How is it implemented? (engineering)

• We will consider both perspectives

Two questions about reliability

Questions?

• We now have the address of the web site
• And, a route/path to the destination
• And, mechanisms in place to forward the packets at each switch/router
• In a reliable manner

• So, we can send packets from source to destination
• Are we done?

• When a packet arrives at a host, what does the host do with it?
• To which process (application) should the packet be sent?

• If the packet header only has the destination address, how does the host
know where to deliver packet?

• There may be multiple applications on that destination

Finishing our story

• Who puts the source address, source port, destination address,
destination port in the packet header?

And while we are finishing our story ….

The final piece in the game: End-host stack

Of Sockets and Ports

• When a process wants access to the network, it opens a socket, which is
associated with a port

• Socket: an OS mechanism that connects processes to the network stack

• Port: number that identifies that particular socket

• The port number is used by the OS to direct incoming packets

• Packet Header must include:
• Destination address (used by network)
• Destination port (used by network stack)
• And?
• Source address (used by network)
• Source port (used by network stack)

• When a packet arrives at the destination host, packet is delivered to the
socket associated with the destination port

• More details later

Implications for Packet Header

• Network: Deliver packets from host to host (based on address)

• Network stack (OS): Deliver packets to appropriate socket (based on port)

• Applications:
• Send and receive packets
• Understand content of packet bodies

Separation of concerns

Secret of the Internet’s success is getting
these and other abstractions right

• Application opens a socket that allows it to connect to the network stack

• Maps name of the web site to its address using DNS

• The network stack at the source embeds the address and port for both
the source and the destination in packet header

• Each router constructs a routing table using a distributed algorithm

• Each router uses destination address in the packet header to look up the
outgoing link in the routing table

• And when the link is free, forwards the packet

• When a packet arrives the destination:
• The network stack at the destination uses the port to forward the

packet to the right application

The end-to-end story

• The Internet is a huge, complicated system

• One can study the parts in isolation
• Routing
• Ports, sockets
• Network stack
• …

• But the pieces all fit together in a particular way

• Today was quick overview of how pieces fit…
• Don’t worry if you didn’t understand much of it
• You probably absorbed more than you realize

Today’s lecture

