

CS/ECE 4457

Computer Networks: Architecture and Protocols

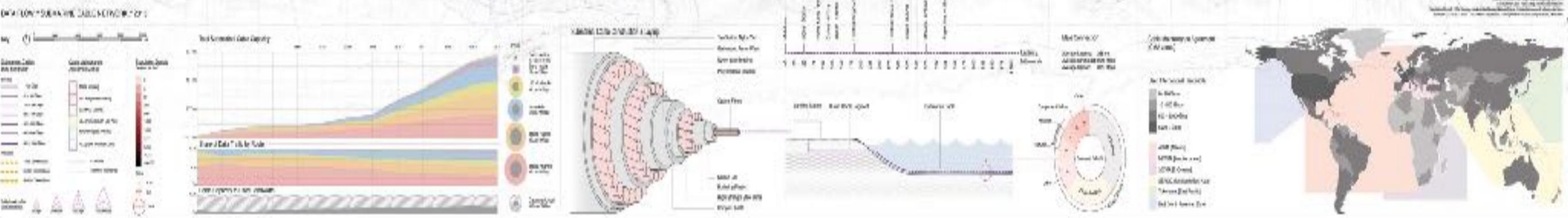
Qizhe Cai

Context for today's lecture

- This will be my first time teaching this class
- I'm really looking forward to it!
- Good dynamics, from the very beginning
- Explicit about my expectations
 - Knowing exactly what you expect to do ...
 - Going above and beyond to meet those expectations ...
 - ...

Goal of Today's Lecture

- Tell you about the course
 - What we will cover
 - How I teach
 - What I expect from you
- You can then decide whether you want to take the course
- If you stay:
 - you have been forewarned, and
 - you are agreeing to my conditions

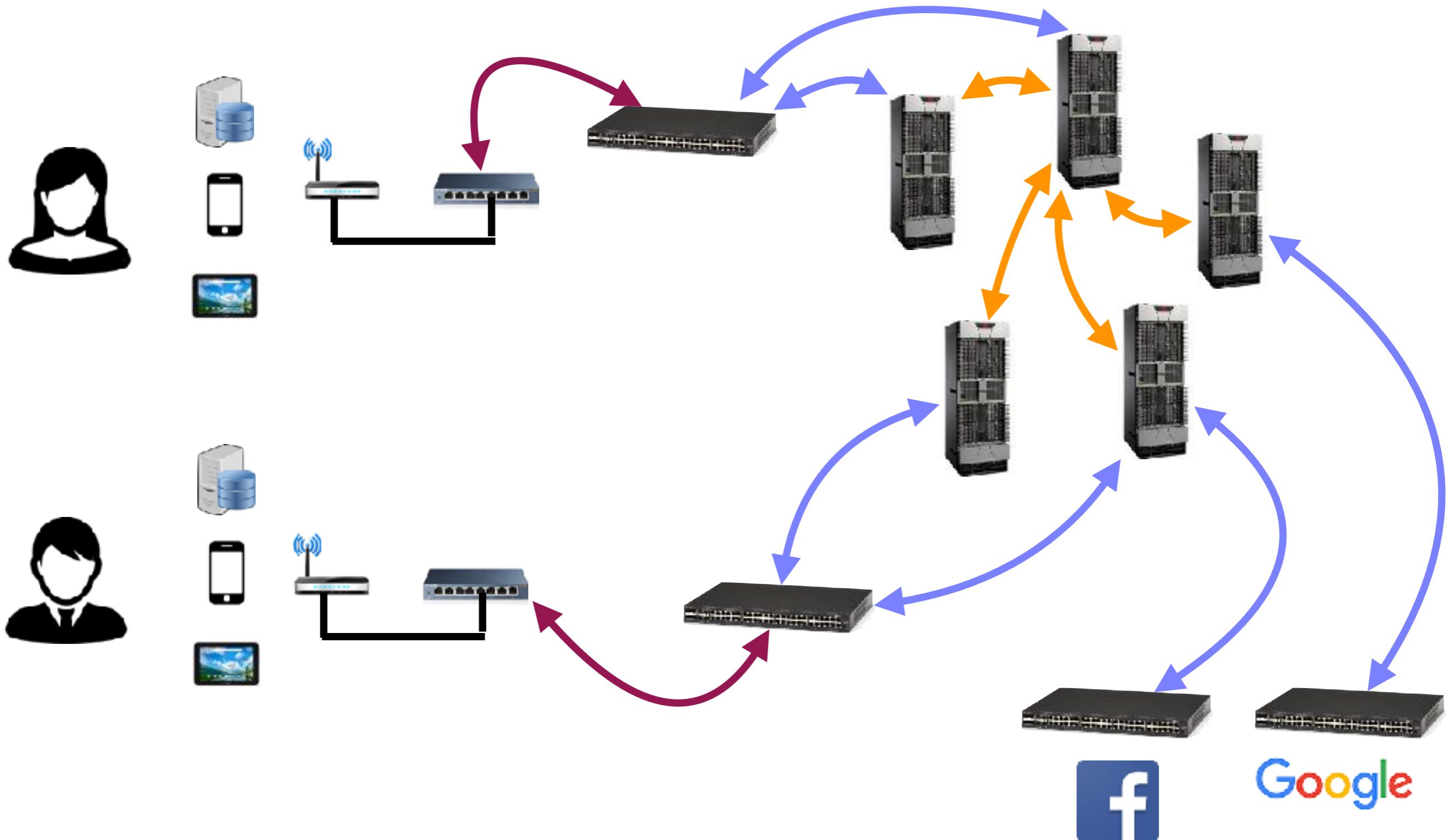

The “contract”

- You will try to attend every class
- You will not treat Piazza/ as a substitute for class attendance
- You will not talk in the class, unless I ask you to
- You will not complain if slides do not capture everything I have said
- You will not complain that my slides look like they were made in PowerPoint '97.
- You will try to laugh at my jokes, even if they are terrible

Today's lecture: 10 basic questions

1. **What do I mean by “computer networks”?**
2. **What do computer networks do?**
3. **What do computer networks look like?**
4. **Why study computer networks?**
5. **What is this course about?**
6. **What is the course workload, grading policies, etc.?**
7. **How will this course be organized?**
8. **Who am I?**
9. **How do I teach?**
10. **Is CS4457 the right class for you?**

#1: What do I mean by “computer networks”?


What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

- **Three important components:**
 - Set of network elements, connected together:
 - Core “infrastructure”
 - **Protocols:**
 - Needed to use the network
 - **Purpose:**
 - Sharing resources at the end hosts (computing devices)

What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

What is a computer network?

A set of network elements connected together, that implement a set of protocols for the purpose of sharing resources at the end hosts

- **Three important components:**
 - Set of network elements, connected together:
 - Core “infrastructure”
 - **Protocols:**
 - Needed to use the network
 - **Purpose:**
 - Sharing resources at the end hosts (computing devices)

Questions?

#2: What do computer networks do?

What do computer networks do?

A computer network delivers data between the end points

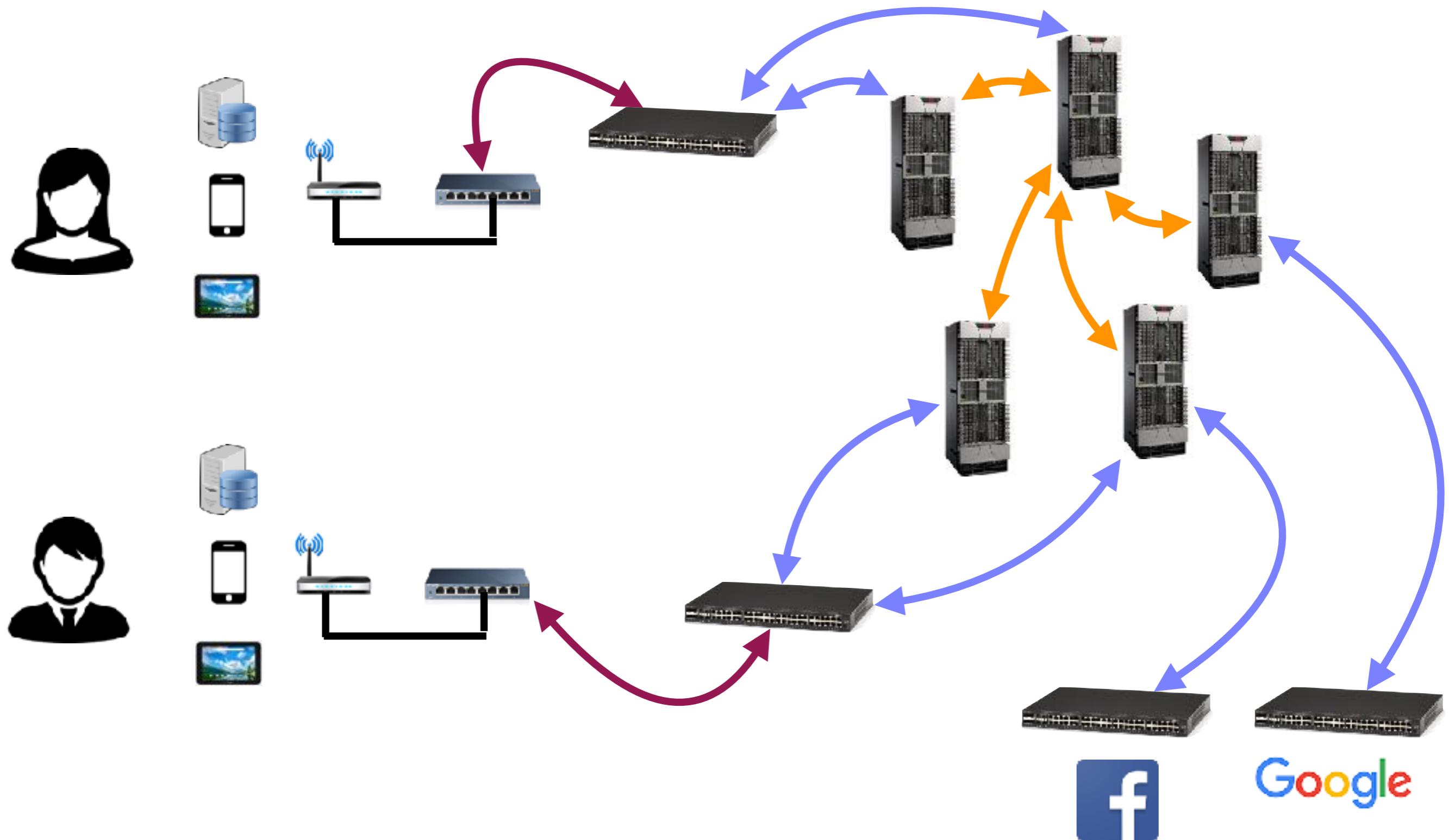
- **One and only one task:** Delivering the data
- **Read that sentence again. Remember it forever.**
- This delivery is done by:
 - Chopping the data into **packets**
 - Sending individual packets across the network
 - Reconstructing the data at the end points
- **That is all! This course:**
 - Evolution of three components of computer networks!
 - Infrastructure, protocols, purpose
 - Why the *&#@ has it taken 50 years of research (and counting) to design a data delivery system

Data delivery as a fundamental goal

- Support the logical equivalence of Interprocess Communication (IPC)
 - Mechanism for “processes on the same host” to exchange messages
- Computer networks allow “processes on two different hosts” to exchange messages
- Clean separation of concerns
 - Computer networks deliver data
 - Applications running on end hosts decide what to do with the data
- Keeps networks simple, general and application-agnostic

Questions?

#3: What do computer networks look like?


What do computer networks look like?

Three Basic components

- **End hosts:** they send/receive packets
- **Switches/Routers:** they forward packets
- **Links:** connect end hosts to switches, and switches to each other

What do computer networks look like?

End hosts, switches/routers, links

#4: Why study computer networks?

Why study computer networks?

What would the world look like without the Internet?

- Lets see

Why study computer networks?

#1: Has transformed and more importantly, is transforming everything!

- **Industry: core to and creator of many large and influential companies**
 - Google, Meta, Apple, Cisco, Broadcom, AT&T, Verizon, Akamai
- **Communication**
 - Email, messenger, phones, VoIP, ...
- **Travel**
 - Airbnb, Uber, Maps, ...
- **Health**
 - Digital health, remote diagnostics,
- **Entertainment**
 - Netflix, news
- **Relationships**
 - Okcupid, Tinder, ...

Why study computer networks?

#2: To learn how to design for tussle!

- **Federated System**

- The Internet interconnects different networks
 - >18000 Internet Service Providers (ISPs)
 - How do you interconnect distrustful and competing entities?
 - Constant tussle between business and technical factors!

Why study computer networks?

#3: To learn how to design for scale!

- **Tremendous scale**
 - 51% of world population
 - 1.24 trillion unique web pages
 - Every **second**, approximately
 - > 2 million emails
 - > 40000 Google search queries
 - > 6000 Tweets
- **Introduced the phrase “Internet-scale”**

Why study computer networks?

#4: To learn how to design for diversity!

- **Communication latency:** Microseconds to seconds
- **Bandwidth:** 1Kilobits/second to 100Gigabits/second
- **Packet Loss:** 0-90%
- **Technology:** Wireless, satellite, optical, copper, ...
- **End hosts:** Sensors, cell phones, computers, servers, datacenters, ...
- **Applications:** www, voice, video, gaming, remote medicine
- **Trust models:** selfish (users), malicious (attackers), greedy (companies), ...

And yet, everything needs to work in tandem!

Why study computer networks?

#5: To learn how to design for evolution!

	1970	Today
Bandwidth	50 kbps	100+ Gbps
#End hosts	< 100 computers	8 billion +
Applications	Telnet and File transfer	!!

We have no clue what 2035 would be like!

Why study computer networks?

#6: To learn how to think “architecture rather than engineering”!

- The early pioneers came up with a solution that has lasted for 40 years!
 - Almost unchanged!!! A true success story of “thinking differently”!!
 - Brilliant in conception; sometimes weak in execution
 - Several architectural principles emerged
 - Decentralization [All lectures]
 - “Packets” [Lecture #2]
 - Statistical multiplexing [Lecture #2]
 - The end-to-end principle [Lecture #3, #6+]
 - Layering [Lecture #3, #6+]
 - Best effort service [Lecture #4, #6+]
 - Narrow waist interface [Lecture #6]

Why study computer networks?

#6: To learn how to think “architecture rather than engineering”!

- The early pioneers came up with a solution that has lasted for 40 years!
 - Almost unchanged!!! A true success story of “thinking differently”!!
 - Brilliant in conception; sometimes weak in execution
 - Several architectural principles emerged

Computer networks offer us a lesson on how to “reason” through the design of a complex, diverse, ever-evolving, failure-prone system

- What are our goals and constraints? How to prioritize them?
- How do we decompose a problem into smaller components?
- How to partition the functionality across multiple components?
- What are the design tradeoffs?

In short, how to **architect a system!**

#5: What is this course about?

What is this course not about?

- **There are many kinds of computer networks (and technologies)**
 - Telephone (landline) networks
 - Cellular networks
 - Wireless networks
 - Optical networks
 - Infiniband
 -
- **And many applications of these computer networks**
 - World Wide Web
 - Multimedia streaming
 - Social networks
 - Email/audio/video messaging
 - Search
 -

What is this course about?

Architectural principles, design goals and performance objectives in wired networks

- **What tasks get done?**
 - What is delivered (packets, files, ...)?
 - What are the semantics (reliability, ordering, ...)?
- **Where do tasks get done?**
 - At the network elements? At the end-hosts?
- **How tasks get done?**
 - What protocols and algorithms do each of these use?
 - How to achieve various performance objectives (latency, etc.)?

What is this course about?

Architectural principles, design goals and performance objectives in wired networks

- **Mostly drawing examples from the Internet**
 - Not a particular kind of network
 - Not just another technology on the list
 - **Ties different networks together**
- **Why Internet?**
 - Has similar goals as individual network technologies
 - Speed, Cost, Reliability, ...
 - Has an additional fundamental goal
 - **Ability to connect all computer networks (and technologies)**
 - **Leads to myriad of new challenges**

Questions?

#6: What is the course workload, grading policies, etc.?

Course workload

- **Problem set, one every two weeks**
 - For you to practice questions; solutions available after one week
- **In-class surprise quizzes**
 - There may be no quiz, or there may be a quiz per lecture
 - Pay attention, regularly read material, attend lectures
- **Three exams**
- **Class feedback**

Course grade

- We will assign you 2 preliminary grades

	Grade1	Grade 2
Exam 1	20	20
Exam 2	25	30
Exam 3	40	45
Quizzes	10	0
Course eval	5	5

- Your **final grade** will be the **best out of the 2** preliminary grades
- I am perfectly happy to assign everybody an A grade

Course workload

- **My courses tend to be “heavy”: require regular attention**
 - You have been warned!
- **My exams tend to be hard**
 - You have been warned!
- **Quizzes will be simple**
 - Pay attention, regularly read material, attend lectures
 - Solve problem sets regularly

#7: How will this course be organized?

Course organization

- **Prerequisites**

- This is a senior-level course
- We expect knowledge of algorithms, probability, data structures
 - Review your past courses as needed

- **Textbook**

- **Computer Networks: A systems approach**
 - 6th edition, but others are fine too (translate sections, etc.)
 - We will not follow its order of presentation
 - Instead, use it as a reference for individual topics
- e-version of the book available online

- **Advanced readings**

- If you get curious about a topic and want to read more
- Anything not covered in the class will not be in exams/quizzes

Interaction with course staff

- **Piazza**
 - Not a substitute for classes
- **Office hours**
 - We want to choose timings that suit you;
 - We will announce office hours (time/location) on Piazza
- **Website:**
 - <https://www.qizhecai.com/cs4457-sp26/>

Interaction with course staff

- **Piazza**
 - Not a substitute for classes
- **cs4457staffsp26@virginia.edu**
 - For time-sensitive matters

5 minute break

#8: Who am I?

Instructor — Qizhe Cai

- Assistant Professor
- Previously: Cornell
- Office: 102, Rice Hall
- **Proud of: my students**
 - One PhD student: Tianyu

Instructor — Qizhe Cai

- **Research interests: problems that excite me**
 - Publish in top conferences of several areas:
 - **Networking (NSDI, SIGCOMM)**
 - **Operating systems (OSDI, SOSP)**
- **Non-research interests:**
 - Video games
 - Sports: soccer, football (mainly watching these days)

#5: How do I teach?

My teaching style not for everyone ...

- I am not a great educator
- I teach the old-fashioned way — I talk, you listen
- If you want to be online, or talk to your friends
 - Then please pick another class ...
 - ... and leave the class for those who want to learn
- I should never have to ask for quiet during lecture
 - If things get bad, I'll start asking people to leave

Second, my teaching style not for everyone ...

- **I ask more questions than I answer**
 - Ask questions before telling you a concept/algorithm
 - This is a key part of my teaching style
 - Why do I ask questions ...
 - I probably know the answer
 - I can probably explain the answer better than most of you
 - So, why I ask?

Second, my teaching style not for everyone ...

- **I ask questions so you can think!**
 - The pause after the question is the only time you get to think
 - When I ask a question, I don't care if you answer
 - But please, **think about the question!**
- **The discussion is more important than the answer**
 - Do **not** focus on how networks are “implemented”
 - Focus on why the networks are “architected” the way they are
- **The best way to learn about networks:**
 - Cannot “follow the logic”, have to try designing yourself
 - First think about how you would solve the problem
 - Then, the solution used by networks would make a lot more sense

Third

- Focus on the big picture
 - What is the conceptual question?
 - What is the key insight?
 - What is the basic answer?
- Learn the details later
 - But only when they make sense in the larger context
- Don't start by focusing on details
 - I am bad at them
 - Course will be boring
 - We will both be wasting our time

Fourth, I know exactly what I expect of you

- **Show up**
- Ask questions when you don't understand
 - Or when you want to understand better
- Answer (or think about) questions when I ask them
 - Even if you aren't sure of the answer
- **Be quiet during the lecture**
- Laugh at my jokes

#10: Is CS4457 the right course for you?

Ask yourself four questions...

- **Agree with the contract?**
 - No violation to the agreement
- **Want to understand the “concepts” and the “why” of networking?**
 - Not just looking for definitions, techniques and pseudo-codes
- **Willing to work regularly**
 - Attend lectures regularly
 - Work on problem sets regularly
- **Ready to have fun?**

If you decide to stay ...

Announcements

- The webpage is up
 - Your first stop for all questions
 - **Read the webpage for course policies, etc.**
- Check for exam dates on webpage
 - If you have a conflict, let us know before 01/20
 - Sending emails to **cs4457staffsp26@virginia.edu**
 - We will not be able to accommodate ANY request after that date

If you decide to stay ...

Next lecture

- The beautiful concept of packets and flows
- Why packets and flows?
- What is statistical multiplexing?
- How long does it take for a packet to go from source S to destination D?

